
From Linked Data to Linked Rules:
Web Rule Essentials

Talk at Semantic Days 2011
Oslo, Norway, 7-9 June 2011

Harold Boley
National Research Council of Canada
University of New Brunswick, Canada

1

42 31E
URI access/naming

Rule Wiki

Modules Layers

linking

2

Introduction

Web rules permit novel Web sites
with machine-interpretable rule representations
for automated reasoning

Research builds on our previous work in
Web rule foundations (e.g., POSL, DatalogDL, ALCu

P)
Standards (e.g., RuleML, SWRL, RIF)
Engines (e.g., OO jDREW)
Use cases (e.g., AgentMatcher, FindXpRT,
Rule Responder, Ontology Integration)

http://www.ruleml.org/posl/poslintweb-talk.pdf
http://www.cs.unb.ca/~boley/papers/DatalogDL-CI.pdf
http://www.cs.unb.ca/~boley/papers/ALCup.pdf
http://www.ruleml.org/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/2005/rules/wg/wiki/FrontPage
http://www.jdrew.org/oojdrew/
http://www.cs.unb.ca/agentmatcher/
http://www.ruleml.org/usecases/foaf/findxprt/
http://responder.ruleml.org/

3

Objective

Devise complementary techniques of
rule representation & reasoning

for
Business Rules
the Semantic Web
Web Services
other Web (and Web 2.0) areas

4

Four Principal Web Rule Issues

Previous research led to following four principal
Web rule issues used here as starting points ...

5

I1: Formal Knowledge as Content or Metadata

Web increasingly has ‘Semantic Subwebs’
containing knowledge documents (knowledge
bases, schemas, etc.)
Formal knowledge representation can act as

content that is queried and retrieved in its
own right
metadata that helps to retrieve other formal
or informal content
a combination of both

6

I2: Global Inconsistency vs. Local Consistency

Open Web as well as closed ‘intranets’
contain knowledge documents:

Open Web knowledge in expressively rich
representations is typically inconsistent
Closed intranet knowledge is typically
paraconsistent, i.e. the documents
in each intranet are maintained to be
(locally) consistent, although the intranet
union may be (globally) inconsistent

→

7

I2: Global Inconsistency vs. Local Consistency (Cont’d)

While classical 2-valued logic
cannot be directly used for
open Web reasoning
it can be exploited locally for
closed intranet reasoning

Locality of documents creates
an implicit module notion
Locality can also be achieved via
an explicit module construct

8

I3: Rule Layering on Top of RDF?

Trade-off between representation expressiveness and
reasoning tractability
→ Scalability of reasoning to the open Web is still
unresolved for higher expressive classes
→ Representation layering on top of quite
inexpressive languages:
RDF is W3C's fundamental knowledge layer, although
its XML syntax is somewhat complicated, and its
semantics is rather complicated

9

I3: Rule Layering on Top of RDF? (Cont’d)

Yet, simple RDF statements without blank nodes in
assertions, queried without property variables, are a
candidate for the least expressive (binary-)fact layer:
Use RuleML & RIF’s slotted syntax (F-logic semantics)
Binary Datalog rules, similar to relational views over
2-column tables, can then be added to derive new
facts from conjunctions of other facts, much like
relational joins
Finally, an irreflexive subClassOf fragment of RDF
Schema can be employed to define order-sorted
types for constants and rule variables

10

I4: Web Standards Compatibility / Webizing

Web rules layered on, and side-by-side with, other Web languages

→ Represent rules so that compatibility with relevant Web
standards (e.g., XML, RDF, OWL) is preserved
Selecting Web standards can be hard, e.g. which, if any,
query and transformation languages should be included
(e.g., XQuery, XSLT, SPARQL, OWL-QL)
Levels and degrees of compatibility with each selected language
need to be determined

→ Focus on what is unique to Web languages, namely
‘webizing’, basically permitting Web rule language to use
URIs for global constants, in ways compatible with URIs
in existing (Semantic) Web languages

11

Four Essentials of Web Rules

To address issues I1-I4, we will consider four
corresponding essentials of Web rules, E1-E4

Taken together, the Web rule essentials will
constitute a diamond-like system, , with
URIs (E4) at the bottom, modules (E2) and
assertional-terminological layers (E3) on the
same level in the middle, and a Controlled
English Wiki (E1) at the top

42 3
1E

12

42 31E
URI access/naming

Rule Wiki

Modules Layers

13

E1: Combining Logic Rules with Controlled English

Combine formal and informal knowledge in a
Rule Wiki, where clauses (here, rules and facts)
are given dual representations, in natural
language (e.g., English) and in logic
Formal parts can be taken as code
(or as metadata) for the informal parts,
and the informal parts as documentation
(or as content) for the formal parts

14

E1: Combining Logic Rules with Controlled English
(Cont’d)

This combination is analogous to Knuth’s
Literate Programming and to Javadoc
Supported by tools mapping Controlled
English into rules and back

English-to-rule tools based on Attempto:
TRANSLATOR, and AceRules
Related tools have also been developed for
AceWiki and “Semantics of Business
Vocabulary and Business Rules” (SBVR)

15

E1: Rule(ML) Wiki

Classical Wiki permits authoring of informal-
knowledge documents using natural-language-
enriching markup simpler than (but mapped to) HTML
Extending this concept, a Rule Wiki permits formal-
knowledge authoring using logic-language-enriching
markup simpler than (but mapped to) XML, combining
this with informal-knowledge authoring
Formal-knowledge language can employ a human-
readable syntax such as POSL, integrating the Prolog
and F-logic syntaxes

16

E1: Rule(ML) Wiki (Cont’d)

17

42 31EModules Layers

URI access/naming

Rule Wiki

18

E2: A Distributed Rule Module Construct

Beneficial to represent distributed knowledge via a
module construct,

supporting local consistency
reducing the search space of scoped
(module-restricted) queries
permitting scoped negation as failure
(over closed worlds)

Such Web modules may be
written and used ‘in place' or
defined at one place (URL) and accessed from other places

The semantics of modules should not depend on any
needed URL-dereferencing

19

E2: Modules in RuleML

RuleML 0.91 embeds modules (Rulebases) into an
Entails element, which serves to prove whether a
query or module is entailed by another module
Can be extended to nested (cycle-free) inheritance
system of modules
We only need a simplified kind of module inheritance,
since by default we don’t assume Prolog-like textual
order in a module's set of assertional (fact and rule)
or terminological (subclass-ontological) clauses

→ Don’t need to merge clauses but can just
take their union

http://www.ruleml.org/0.91/

20

E2: Module Example: loyalty

{
discount(?customer,?product,percent[5]) :-
premium(?customer),
regular(?product).

discount(?customer,?product,percent[10]) :-
premium(?customer),
luxury(?product).

}

21

E2: Module Example: legality

{
-discount(?customer,?product1,?percent) :-

payment(?customer,?product2,?amount,?method,?time),
fraudulent(?customer,?method,?time).

-discount(?customer,?product1,?percent) :-
delivery(?customer,?product2,?amount,date[?y1,?m1,?d1]),
payment(?customer,?product2,?amount,?method,date[?y2,?m2,?d2]),
datediff(days[?delta],date[?y2,?m2,?d2],date[?y1,?m1,?d1]),
greaterThan(?delta,45).

}

Using “-” prefix as POSL syntax for RuleML’s (strong) Neg(ation) element

22

E2: Module Prioritization: legality vs. loyalty

Example modules locally consistent, but their union is inconsistent:

According to first rule of loyalty module, premium customers
would be granted 5 percent discount for a regular product, but,
according to the first rule of legality module, would be denied
discount on any product if they used a fraudulent payment method
on a product

To deal with this, prioritization (cf. Courteous Logic Programs
and Defeasible Logic) can be employed on the module level to let
all rules of the legality module override all loyalty rules

23

E2: Module-Scoped Queries  Example Based on
Local Modules: customer and product

{
discount(?customer,?product,percent[5]) :-
customer |- premium(?customer),
product |- regular(?product).

discount(?customer,?product,percent[10]) :-
customer |- premium(?customer),
product |- luxury(?product).

}

Using “|-” infix as POSL syntax for RuleML’s Entails element

24

42 31EModules Layers

URI access/naming

Rule Wiki

25

E3: Assertional-Terminological Expressiveness
Layering  Zooming into the ‘Cake’
Tim Berners-Lee 2006:

26

E3: Assertional-Terminological Expressiveness
Layering

Various efforts towards dual expressiveness layering
of assertional and terminological knowledge as well
as their blends
Assertional bottom layer usually consists of Datalog
(function-free) assertions, perhaps restricted to
unary/binary predicates
Terminological bottom layer can employ irreflexive
version of RDF Schema's subClassOf, which can
later be extended towards the ρDF fragment of RDF

http://www.eswc2007.org/pdf/eswc07-munoz.pdf

27

E3: Assertional-Terminological Expressiveness 
Bottom Layers

Bottom layers can be blended through a
hybrid combination: ρDF classes used as types for
Datalog constants and variables, and subClassOf
defined with order-sorted semantics

or
homogeneous integration: ρDF classes used as
unary predicates in the body of Datalog rules, and
subClassOf defined as special rules with Herbrand-
model semantics

28

E3: Assertional-Terminological Expressiveness 
Higher Layers

Higher layers can develop
Datalog into Horn and FOL (First-Order Logic)
assertions
ρDF into ALC and SHIQ terminologies with classes
and properties
appropriate blends, e.g. as advancements of our
hybrid DatalogDL or homogeneous ALCu

P

Assertional layers can move even beyond FOL,
including towards higher-order and modal logics,
as started as part of the RuleML family

http://www.ruleml.org/talks/RuleML-Family-PPSWR06-talk-up.pdf

29

E3: Layering Example: Vehicle Registration

Vehicle > Van
Vehicle > PassengerVehicle
Van > MiniVan
PassengerVehicle > MiniVan
PassengerVehicle > Car

registration(?V:Van,CAD[?R:Decimal]) :-
emission(?V,CO2[?E]),
weight(?V,kg[?W]),
emiweight(CAD[?R],CO2[?E],kg[?W]).

registration(?V:Car,CAD[?R:Decimal]) :-
emission(?V,CO2[?E]),
speed(?V,kmh[?S]),
emispeed(CAD[?R],CO2[?E],kmh[?S]).

Terminology:Assertions:

Vehicle

s

s

PassengerVehicle

s = rdfs:subClassOf
Van

s

MiniVan s

s

Car

s

30

42 31EModules Layers

URI access/naming

Rule Wiki

31

E4: URIs for Access or Naming

There have been attempts to differentiate the Web
notion of URIs into two subnotions:

URLs (Uniform Resource Locators), for access
URNs (Uniform Resource Names), for naming

In the context of Web knowledge representation,
three central URI uses are emerging, given here in
the order of further needed research

32

E4: URIs for Access, Naming, or Both (1)
A URI can be used URL/access-style, for module import,
where it is an error if dereferencing the URI does not yield
a knowledge base valid with respect to the expected
representation language

Example: The loyalty module can be imported into
the current rulebase using URL/access-style URI
http://modeg.org#loyalty

33

E4: URIs for Access, Naming, or Both (2a)
A URI can be used URN/naming-style, as the identifier
of an individual constant in the representation language,
where URI dereferencing is not part of the formal
knowledge representation. Dereferencing as part of the
metadata about the informal knowledge representation
retrieves ‘homepage’ of the individual

Example: The URI http://en.wikipedia.org/wiki/Pluto can
be used URN/naming-style to refer to celestial body originally
considered a planet (URI in angular brackets, <. . . >):

planet(<http://en.wikipedia.org/wiki/Pluto>,AD[?year]) :-
lessThanOrEqual(1930,?year),
lessThanOrEqual(?year,2006).

34

E4: URIs for Access, Naming, or Both (2b)
As part of formal rule knowledge, Pluto URI is
used only for naming.
Rule can also be employed as metadata about
informal knowledge via (‘semantic search engine’)
queries like

planet(?which, AD[2005])

since one of its solutions is

?which = <http://en.wikipedia.org/wiki/Pluto>

whose dereferencing (‘clicking’) will then retrieve
Pluto's Wikipedia entry

http://en.wikipedia.org/wiki/Pluto

35

E4: URIs for Access, Naming, or Both (3)
A URI can be used naming-style, as identifier of a class,
property, relation, or function, and at the same time
access-style, where dereferencing yields knowledge base
formally defining that identifier (perhaps partially only,
as for an RDF Schema knowledge base just giving the
superclasses of a class)

Example: for certain formal purposes a URI like
http://termeg.org#MiniVan is needed just to provide
a name; for other formal purposes, also to provide a total or
partial definition found by using that same URI for access
(say, the partial definition of being rdfs:subClassOf both
http://termeg.org#Van and
http://termeg.org#PassengerVehicle)

36

Conclusions (1)

Essentials in are variously interrelated
For instance,

a Rule Wiki for assertional knowledge (E1)
can be extended with

terminological knowledge (E3),
both of which

can be kept in distributed modules (E2)
accessed by URIs (E4)

42 3
1E

37

Conclusions (2)

The four essentials can be transferred to (re)active
rules for knowledge update, which have been
increasingly studied in Web languages such as
Reaction RuleML and Prova
These rules have extra event and action parts:

Can also be combined with Controlled English (E1),
Modules are even more important here, for containing
action side-effects (E2)
Terminologies can be directly added to formalize
both event and action vocabularies (E3)
All kinds of URIs are also crucial for
(re)active Web rules and Web Services (E4)

http://ibis.in.tum.de/research/ReactionRuleML/
http://www.prova.ws/

	From Linked Data to Linked Rules:�Web Rule Essentials��Talk at Semantic Days 2011�Oslo, Norway, 7-9 June 2011 �
	Introduction
	Objective
	Four Principal Web Rule Issues
	I1: Formal Knowledge as Content or Metadata
	I2: Global Inconsistency vs. Local Consistency
	I2: Global Inconsistency vs. Local Consistency (Cont’d)
	I3: Rule Layering on Top of RDF?
	I3: Rule Layering on Top of RDF? (Cont’d)
	I4: Web Standards Compatibility / Webizing
	Four Essentials of Web Rules
	E1: Combining Logic Rules with Controlled English
	E1: Combining Logic Rules with Controlled English (Cont’d)
	E1: Rule(ML) Wiki
	E1: Rule(ML) Wiki (Cont’d)
	E2: A Distributed Rule Module Construct
	E2: Modules in RuleML
	E2: Module Example: loyalty
	E2: Module Example: legality
	E2: Module Prioritization: legality vs. loyalty
	E2: Module-Scoped Queries  Example Based on Local Modules: customer and product�
	E3: Assertional-Terminological Expressiveness�Layering  Zooming into the ‘Cake’
	E3: Assertional-Terminological Expressiveness�Layering
	E3: Assertional-Terminological Expressiveness �Bottom Layers
	E3: Assertional-Terminological Expressiveness �Higher Layers
	E3: Layering Example: Vehicle Registration
	E4: URIs for Access or Naming
	E4: URIs for Access, Naming, or Both (1)
	E4: URIs for Access, Naming, or Both (2a)
	E4: URIs for Access, Naming, or Both (2b)
	E4: URIs for Access, Naming, or Both (3)
	Conclusions (1)
	Conclusions (2)

