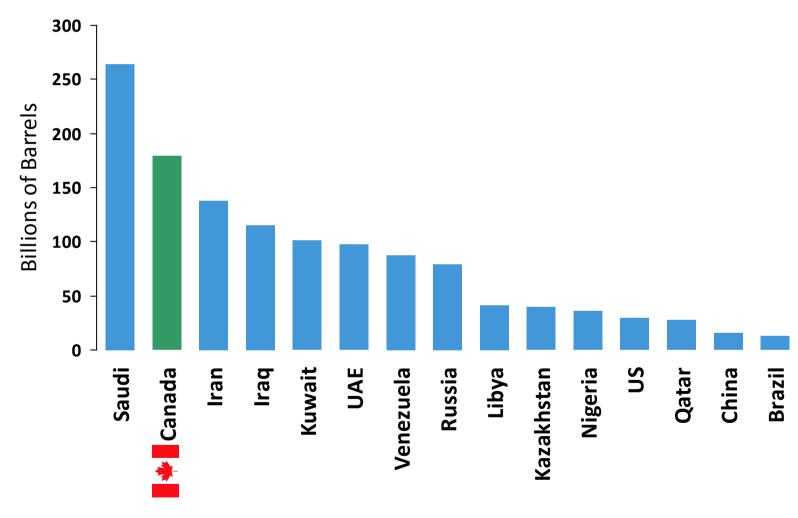
Smarter Decisions and Standards for Integrated Operations & Maintenance **Semantic Days 2011 Framework and OpenO&M Initiatives** June 8th, 2011

The New 'Black Gold' Alberta Oil Sands – A Vast Resource

Fort McMurray

Alberta area oil sands & heavy oil deposits contain ~2.5 Trillion barrels of world's known petroleum reserves

Alberta deposits cover 77,000 sq km (~30,000 sq mi)


Athabasca Deposit

> 42,000 sq km
890 Billion barrels in place
20% within 250 ft. of surface
30 Bb Mineable; 142 Bb In-Situ

3

Proven Reserves

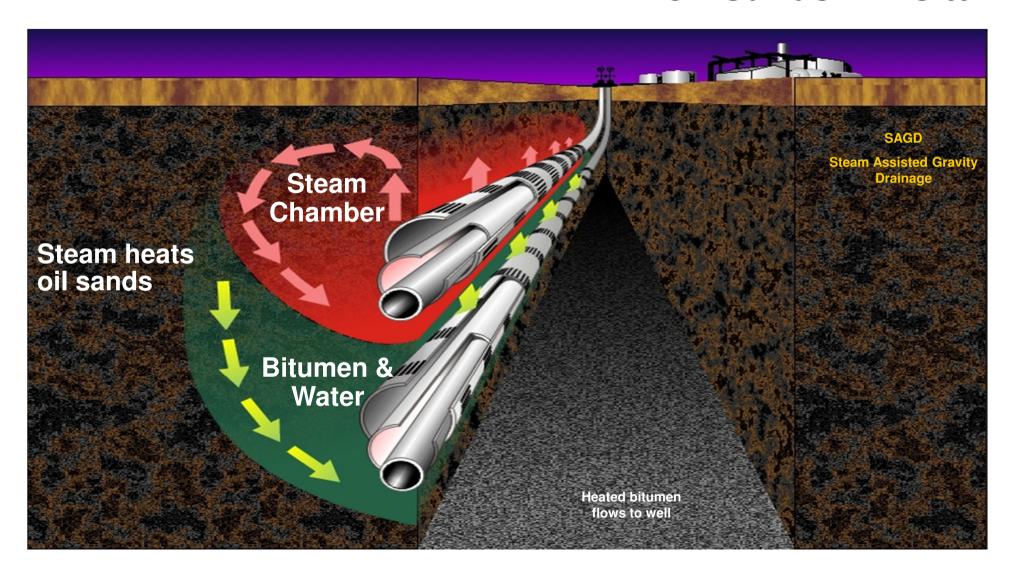
Source: BP Statistical Review of World Energy 2008

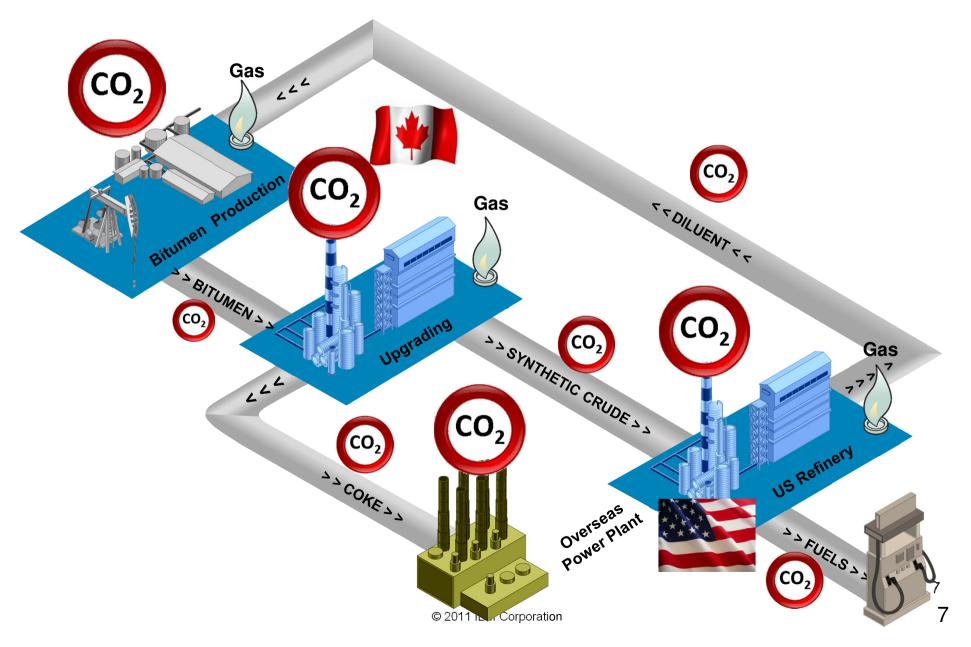
© 2011 IBM Corporation

Oil Sands, The Resource Bitumen - Easy to Find, Tough to Get Out!!

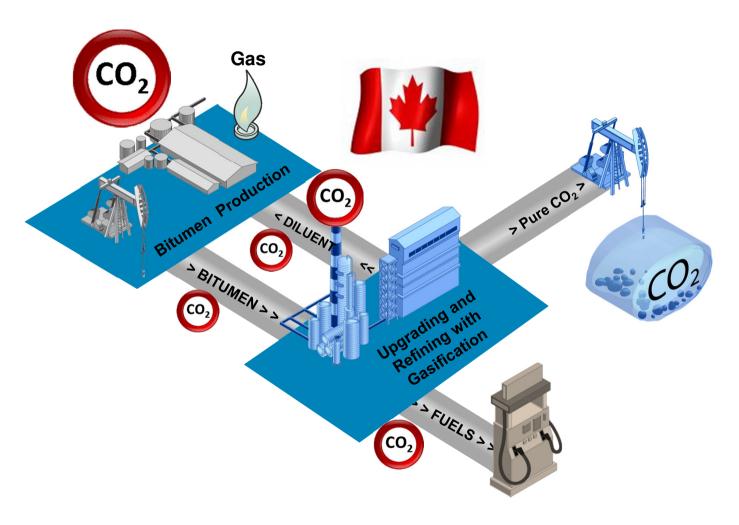
- Thick, sticky mixture of
 - -Sand,
 - -Clay,
 - -Water,
 - -Bitumen: 8 9 °API

Oil Sands: Mining




© 2011 IBM Corporation 5

Oil Sands: In-situ



Historical Process - Coking - Bitumen to Fuels

The Future: Bitumen to Fuels with CCS

One step conversion to fuels with gasification and CCS - Benefits for All Canadians

As We Were ... and, Still Are..??

Supply & Distribution

What's Missing?

Enterprise Business Systems Enterprise Resource Planning (ERP)

Operations

laintenance

Physical Asset Control Real-time Systems

Current Operational Eco-system Options

Walled Garden

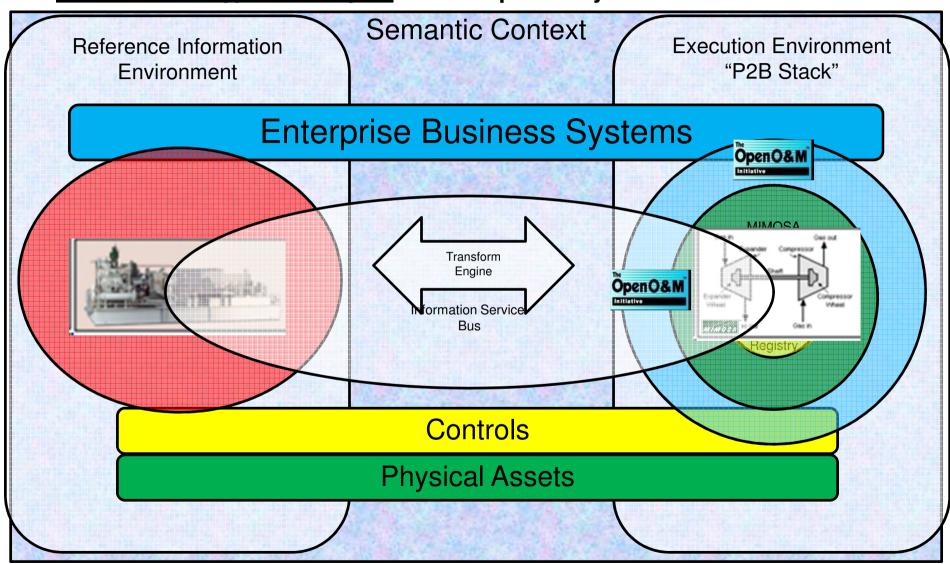
- Large suppliers proprietary eco-systems
- Suppliers make the rules
- Suppliers often set high barriers to entry
- High switching cost O/O lock in
- O/O data is trapped in proprietary apps
- Innovation can be constrained

Open Source

- Can be chaotic
- Suppliers may be unknown
- Ambiguous support model
- Fragmentation often takes place
- Interoperability may become poor
- Critical infrastructure often precluded

Industrial solutions are still heavily dependent on large scale custom integration services efforts. Individual Owner/Operators redundantly bare the development and sustainment cost for each of these efforts.

© 2011 IBM Corporation 11

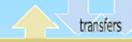


We need a significant paradigm shift – The Un-walled Garden

- A new industry solutions model where systems of systems interoperate in an industry eco-system based on open, supplier neutral standards
 - Collaboration between industry standards bodies Bring proven standards together
 - Shared, supplier neutral industry information models O/O Data is not trapped
 - Shared, supplier neutral industry utility services (SOA-2) driven by industry use cases
- Trusted public/private organization provide third-party certification & identification
- Owner/Operator Leadership and Governance
- Incremental, prioritized transformation The Safe Technology Roadmap™
- A practical path to the Industrial Cloud

IBM

Context for Collaboration The Safe Technology Roadmap™ for Interoperability



strategic fit

BUSINESS PROCESS / SERVICES EXECUTION ARCHITECTURE

Run-time Services

Composition Services Business Services Application Services

Workflow Execution

Business Process Model

Roles

Task Mgmnt

Interaction

Governance Services

Orchestration
Supervisor: Broker, etc.
SLA Mgmnt. Services

2

Open Operation and Maintenance Utility Services and ISBM*

*Information Service Bus Model

Data Model

External Model Map MetaData NameServices

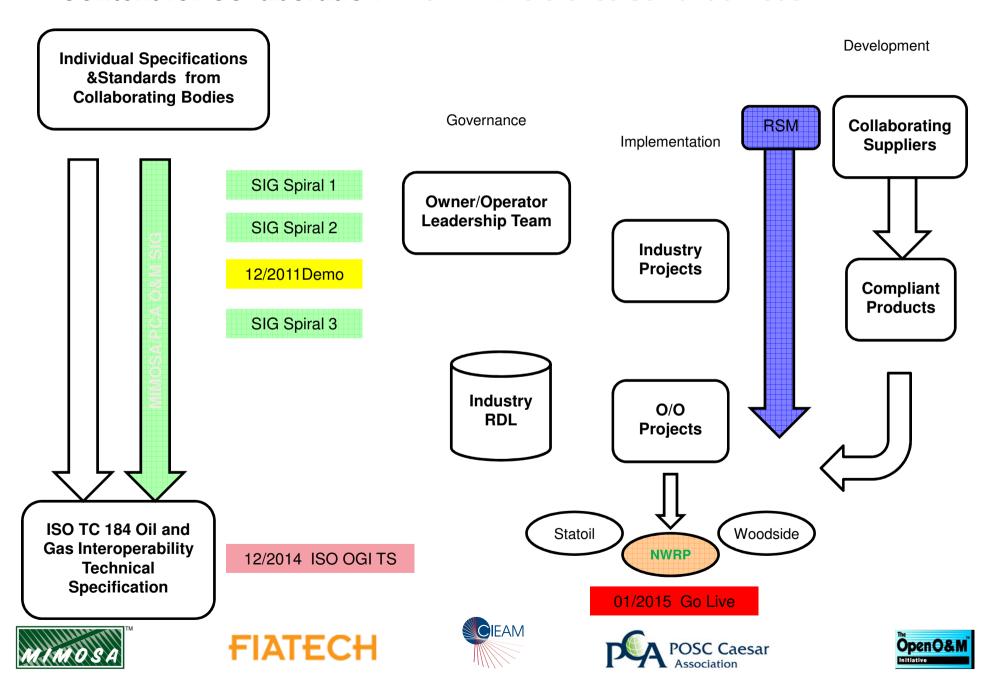
Persistence

Intelligent Cacheing Data Store Data Warehouse

Event Detection Subsystem: real-time detect, correlate, publish/subscribe, forwarding, etc.

Messaging Subsystem: routing (content, rules, etc.), queueing, transformation, synch/asynch, etc.

transfers


OpenO&M

Key Use Cases

- 1. "handover" as-designed/built information from engineering, procurement, construction phase to O&M phase
- 2. recurring updates send engineering upgrades to O&M systems
- 3. field engineering changes sent to engineering (bottom up)
- 4. on-line product data library updated with engineering reference information (asset based data)
- 5. operations & maintenance configuration changes (e.g. remove/replace transmitter)
- 6. preventive maintenance (PM) triggering
- 7. condition-based maintenance (CBM) triggering
- 8. early warning Notification
- 9. incident management actual & near-miss information captured and escalated along the lines of accountability

Context for Collaboration With IBM/Reference Semantic Model

Framework and Integrated Operations & Maintenance for O&G Guiding Principles

- Architecture-Centric not Application Centric
 - Product Neutral
 - Operating Platform Neutral
 - Bus Neutral for Publish/Subscribe of Events
 - Control Flow Monitoring / CBM Events
 - OpenO&M Business Process Events
- Practical implementation approach
- Standards-enabled at all levels

Northwest Upgrading / Northwest Redwater Partnership Phase 0 Co-Phases with MIMOSA / PCA - O&M Special Interest Group

Implement and support an Interoperability Test Laboratory at IBM's Global Solution Center. The laboratory will consists of key applications types:

- Engineering applications and design tools
- IBM's IIC Integration and Information Core/Framework Solution
- Document Management
- Assetricity's Open Operations and Maintenance Solution Products including:
 - The IOM-OG® REGISTER an enterprise O&M Registry Management System (OpenO&M Common Interoperability Register & MIMOSA CCOM)
 - The IOM-OG® TRANSFORM Model Based Information Transformation Engine (OpenO&M / ISO15926 / Other information models)
- Data Historians and Distributed Control Systems

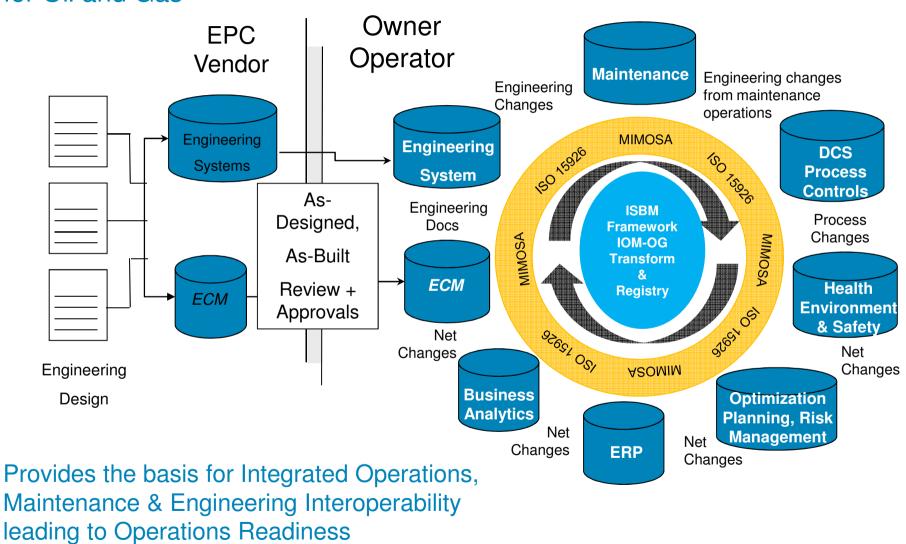
Phase (0) Activities

Provide a transform standards based solution comprised of Web Service and Business Processes that will:

- Create and populate the IOM-OG Registry to be used to initialize multiple operations applications sourced from multiple engineering applications
- Develop work flow processes based on OpenO&M Use Cases that can bulk load and incrementally update target applications in the execution environment
- Focus on a small, O/O prioritized industry data set

Demonstrate:

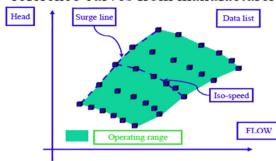
- How IBM's Reference Semantic Model and associated Graphic Symbols set can be *initialized* and *incrementally* updated via the OpenO&M Information Service Bus Model (ISBM) and the IOM-OG Transform.
- How a Real-Time Process Information Historians underlying real-time measurement tags can be configured from the IOM-OG Transform & Registry
- Demonstrate the how ECM/document management organization and hierarchy can be initialized leveraging the IOM-OG Transform & Registry


Phase 1,2,3 rolled out over the next 3 years

Implement the rest of the OpenO&M Used Cases based on NWRP requirements defined in Phase 0 as follows:

- Field/Maintenance Changes to Plant/Facility Engineering
- O&M Asset Configuration Updates i.e. changes to procured assets
- Preventative Maintenance Triggering
- (Semi-)Automatic Triggering of Condition Based Maintenance (CBM)
- Early Warning Notifications based on CBM determinations
- Incident Management/Accountability
- Up-to-Date Product / Equipment Data Library

Industry Standards Based Integrated Operations and Maintenance for Oil and Gas


21 © 2011 IBM Corporation 21

DeBetanizar Fractionator
FlowSheet (PFD) [32LIC 0017

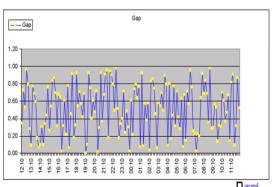
Compressor map:

reference curves from manufacturer

Point list	Speed (rpm)	Flow (acm/h)	Head (m)	Efficiency (%)	
Surge line	Speed-1	Flow	Head	Eff	
Point 2	Speed-1	Flow	Head	Eff	
	Speed-1	Flow	Head	Eff	
Point n	Speed-1	Flow	Head	Eff	
Surge line	Speed-2	Flow	Head	Eff	
	Speed-2	Flow	Head	Eff	

The user may give any number of values per curve, the user may have only one iso-speed Interpolation grid is independent of the number of data

Reference "design" values: Pinlet ref, Tinlet ref, orifice geometry data, maximum power.


Theoretical values

Value	Measurement	Obtained by other measurements	formula	
Volumic Flow	Direct By FT	PDT on orifice	F=Orifice formula, all values in IS	
Speed	Speed	-		
Pressure ratio	Not direct	P1 P2	PR=P2/P1	
Temperature ratio	Not direct	T1 T2	TR=T2 in K / T1 in K	
Enthalpy and Z	Not direct	Gas comp, P1 T1 P2 T2	Z1, Z2, H1=Cp1*T1, H2=Cp2*T2 by Hysys	
Specific volume	Not direct	Gas comp P1 P2 T1 T2	V1 = Z1RT1/P1, R constant of gas V2 = Z2RT2/P2	
Isentropic exponent	Not direct		$N1 = \ln(P2/P1)/\ln(v1/v2)$	
Polytropic work factor	Not direct		F=(h2-h1)/[(n1/(n1-1)*(p2v2-p1v1)]	
Polytropic exponent	Not direct		N=ln(PR)/ln(N1)	
Polytropic head	Not direct		Wp=f*n/(n-1)*(p2v2-p1v1)	
Polytropic efficiency	Not direct		Etap = Wp / (h2-h1)	
Gas power	Not direct		Pwr = v1*F*Wp/Etap	
Normalized flow	Not direct	F, P1, T1	Fstandard = F*(T1/288.15)*(1/P1)	

Values	Measured value req'd	Measured value req'd	Theoretical value from interpolation or formula	Discrepancy
Polytropic Head	Speed N	Flow F	Interpolated Head Hp_theor	Head-measured - Head- interpolated
Polytropic Efficiency	Speed F	Flow F	Interpolated efficiency Etap_theor	Efficiency_mea sured - efficiency_inter polated
Power			Pwr = v1*F*Hp_theorEtap_theor	Power measured - power theoretical
Enthalpy	T1, P1, gas_comp		H1=Cp1*T1 Cp1 by Hysys H2_theor = Hp_theor/Etap_theor + H1	
Discharge temperature			T2_theor = H2_theor/Cp2_theor Cp2_theor by Hysys (iterative)	
Discharge pressure Theoretical P			Descrive calculation: First instration values derived from measurement. Values of the	
and Tratios Pl from Pl measured	T1, P2, T2, gas_comp		Deserve calculation: First ineration: values derived from measurement. V2=227-87.72-97. 22 and X by Hysys v1_theore21_theor+X-71_theor+Y2_theory2_theo	

Performance curves 3 Polytropic head

For more information, please contact Debra Miller Fleischer at 720-395-6685 or debra@us.ibm.com.

Smarter

Oil & Gas

Recent Oil and Gas Industry
Upstream Event Held In Houston

Keynote Speakers

Dr. Lee Hunt – President IADC

USCG Rear Admiral Landry

Dr. Thore Langeland – Manager

IO, OLF

Theme

It is a small, interconnected world and we need to collaborate to develop and deploy the needed solutions.

24