

ISO 15926 Geometry Templates using OWL

Manoj Dharwadkar, Ph.D. Director, Data Interoperability Bentley Systems Inc.

(Chair: PCA Geometry SIG)

June 2nd, Semantic Days 2010

Content

- ISO 15926 and Reference data
- Use of Semantic Web
- Templates Methodology
- Challenges and Need for Geometry Templates
- Geometry Special Interest Group (SIG)
- Geometry Scope
- Geometry Templates Examples

What is ISO 15926?

- Integration of life-cycle data for process plants, including oil and gas production facilities
 - Standard for interoperability and the integration of lifecycle information

• Standardizes:

- Dictionary and Taxonomy
- Ontology (Using Template Methodology)
- How computer systems connect, exchange and share information

Implemented using Semantic Web Standards

ISO 15926 reference data: At its simplest

Realizing Open Information Interoperability

...

Relation to Semantic Web

POSC Caesar ociation **Reference** Data Library Plant Owner/ **Operator** - HQ Plant Owner/ **Operator** - Plant EPC contractor – A EPC contractor – B Supplier Catalog -e.g. PLib Supplier – project data RDL of standards organization

ISO 15926 Architecture

Templates Methodology

Templates are n-ary relationships

Complex to build but Easy to Use

Template Signatures – Specifications for Ontologies

A template is a pattern for stating facts

- A Template for ISO 15926 is a predicate, a statement form, a pattern for facts
- A template has a signature defining the form of a statement
 - Arguments and Types
- Each template has an *interpretation rule* that interprets facts that fit the pattern
 - Reducing a complex statement into simpler ones
 - Yielding an expression of the fact in the ontology language

Methodology is rigorously defined in ISO 15926-7

Template example

A fairly complex claim

"The ambient temperature during operation of a 3051CG pressure transmitter should be within -40 and 85 degrees Celsius."

Property with Scale and Quantification

"The ambient temperature during operation of a 3051CG pressure transmitter should be within -40 and 85 degrees Celsius."

...

Property Range

...

Property Range Restriction

Model: Ambient Temperature Range

3051CG ambient temperature: $-40^{\circ}C - 85^{\circ}C$

OWL notation:

Template instance showing temperature range restriction

<rdl:TemperatureRangeRestrictionOfClass rdf:ID="T593292"> <p7tpl:hasRestrictedClass rdf:resource="#COI-439112"/> <p7tpl:hasProperty rdf:resource="http://rdl.rdlfacade.org/data#AmbientTemperature"/> <p7tpl:hasScale rdf:resource="http://rdl.rdlfacade.org/data#DegreesCelcius"/> <p7tpl:valUpperReal rdf:datatype="http://www.w3.org/2001/XMLSchema#real"> 85 </p7tpl:valUpperReal>

<p7tpl:valLowerReal rdf:datatype="http://www.w3.org/2001/XMLSchema#real"> -45

</p7tpl:valLowerReal>

</rdl:TemperatureRangeRestrictionOfClass>

Vision of ISO 15926 Interoperability and Life Cycle

- Started with standards for information handover between EPCs and Owners/Operators
- Last 5-6 years focused on ontology for Integrated Operations
- Last 2-3 years focused on Operation & Maintenance and integration between Engineering and Operation & Maintenance

Geometry Needs and Challenges

- P&ID Documents and 3D Model representation for Process Plants
- Integration with BIM (IFCs) and Facility Management
- Integration with GIS
- Supply Chain and Design to Construction
- Geometry Reference Data available as Part3 (derived from STEP Part 42) but not represented as Templates

Geometry Special Interest Group (SIG)

Collaboration of

ISO 15926 Geometry SIG

Goal: Representing ISO 15926 Part 3 Geometry Reference Data using Part 7 Template Methodology and advancing the usage of Geometry Reference Data

SIG Kicked-Off – Mid April 2010

Current SIG Members

• AVEVA, Bechtel, Bentley, CCC, Noumenon, Siemens, Tecgraf

• Active Contributors:

- Darius Kanga Bechtel, USA
- Mohammed Moubarak CCC, Beirut
- Adrian Laud Noumenon, UK
- Gabriel Lopes TecGraf/PUC-Rio
- Geiza Maria TecGraf/PUC-Rio

ISO 15926 Geometry SIG

Initial deliverables are:

- Geometry Template Signatures in Spreadsheet format
- Documentation of Geometry Reference Data to assist implementers and users
- Example usages of Geometry Reference Data
- Geometry Templates and Classes as Part 8 OWL representation
- Geometry Reference Data hosted in a PCA/FIATECH Sandbox exposed through a SPARQL endpoint

Principal subclasses of surface

...

Principal subclasses of solid

...

Templates for Geometry

 Detailed analysis of ISO15926 Part 3 geometry primitives aiming conformance to ISO15926 Part 7 template methodology

Template Name	Parent Template	Role1 Name	Role1 Type	Role1 Value	Role2 Name
Ellipse					
PrimaryAxis		hasObject	OBJECT_WITH_SEMI_AXIS1		hasPrimaryAxis
SecondaryAxis		hasObject	OBJECT_WITH_SEMI_AXIS2		hasSecondaryAxis
Position		hasObject	OBJECT_WITH_REFERENCE_PLACEMENT		hasReferencePoint

Template Name	Parent Template	Role1 Name	Role1 Type	Role1 Value	Role2 Name
3splineCurve					
ControlPoints	control_points_of_b_spline_curve	hasObject	B_SPLINE_CURVE		hasTableMetricSpacePoir
3splineDegree	degree_of_b_spline_curve	hasObject	B_SPLINE_CURVE		hasDegreeOfBSplineCurv
3 spline Knots	distinct_knots_of_b_spline_curve	hasObject	B_SPLINE_CURVE		hasDistinctKnotsOfBSplin
3 spline Knot Multiplicites	knot_multiplicities_of_b_spline_curve	hasObject	B_SPLINE_CURVE		hasKnotMultiplicitiesOfB

Representing 2D Geometry in OWL

• A globe valve symbol is broken down into a *circle* and a few *polylines*

		Х	Y
Dolutino 1	Point 1	0,034	0,686
Polymie 1	Point 2	0,034	0,302
Polyline 2	Point 3	0,97	0,686
Polyinie 2	Point 4	0,97	0,302
	Point 5	0,119	0,686
Polyline 3	Point 6	0,119	0,302
r orynne 5	Point 7	0,884	0,686
	Point 8	0,884	0,302
Circle	Point 9	0,5	0,5

- Taken from ISO15926 Part 3, all concepts necessary to define a geometry primitive are tied together in a template signature
- Classes and relationships are modeled and instantiated using Protegé

Representing 2D Geometry in OWL

• Example: A template is used to describe a given object as a *circle*

Template Name	Role1 Name	Role1 Type	Role2 Name	Role2 Type	Role3 Name	Role3 Type
Circle						
Radius	hasObject	object_with_radius	hasRadius	metric_space_length		
ReferencePointAndDirection (Position2D)	hasObject	object_with_axial_reference _placement	hasReferencePoint	metric_space_point	hasReferenceDirection	DIRECTION

Representing 2D Geometry in OWL An instance of a circle needs to be created in order to "draw" the globe

Representing 2D Geometry in OWL

 The end result is Part 7 & 8 compliant OWL that can be used to interoperate P&ID geometry using Iso 15926 Templates

Summary

- ISO 15926 Reference data is implemented using Semantic Web Technologies
- Templates Methodology simplifies the Ontology development and is easy to use
- Geometry SIG is formed to advance usage of Geometry Reference Data
- Geometry Templates are being developed using the Templates Methodology

...

Questions?

It's Lunch Time!!

...

Thank You!!

Contact Info

- Manoj Dharwadkar
 - Manoj.Dharwadkar@bentley.com