
Applicability of Semantic
Technologies in Security,

Privacy and Trust

Mohammad M. R. Chowdhury
Senior Researcher

UNIK-University Graduate Center, Norway
mushfiq@ieee.org

http://www.unik.no/personer/mushfiq/

Tuesday, June 8, 2010

mailto:mushfiq@ieee.org
mailto:mushfiq@ieee.org
http://www.unik.no/personer/mushfiq/
http://www.unik.no/personer/mushfiq/

Agenda

Intro: security, privacy & trust
Motivation: why Semantics in Security and Privacy!

Overview of the applicability
Challenges & limitatipons

Tuesday, June 8, 2010

Security Privacy

Tuesday, June 8, 2010

Security Privacy

Tr
us

t

Tuesday, June 8, 2010

Security Privacy

Tr
us

t

Access control

Tuesday, June 8, 2010

Security Privacy

Tr
us

t

Access control

Authentication Authorization

Tuesday, June 8, 2010

Why Semantics in security & privacy?

 <policy>
 <xacl>
 <object href="id(contents)"/>
 <rule id="rule1">
 <acl>
 <subject><uid>Alice</uid></subject>
 <privilege type="read" sign="+"/>
 <privilege type="write" sign="+"/>
 </acl>
 </rule>
 <rule id="rule2">
 <acl>
 <subject><uid>Bob</uid></subject>
 <privilege type="read" sign="+"/>
 </acl>
 </rule>
 <rule id="rule3">
 <acl>
 <subject></subject>
 <privilege type="read" sign="-"/>
 <privilege type="write" sign="-"/>
 </acl>
 </rule>
 </xacl>
 </policy>

 </document>

Semantics and Syntax

Tuesday, June 8, 2010

Why Semantics in security & privacy?

 <policy>
 <xacl>
 <object href="id(contents)"/>
 <rule id="rule1">
 <acl>
 <subject><uid>Alice</uid></subject>
 <privilege type="read" sign="+"/>
 <privilege type="write" sign="+"/>
 </acl>
 </rule>
 <rule id="rule2">
 <acl>
 <subject><uid>Bob</uid></subject>
 <privilege type="read" sign="+"/>
 </acl>
 </rule>
 <rule id="rule3">
 <acl>
 <subject></subject>
 <privilege type="read" sign="-"/>
 <privilege type="write" sign="-"/>
 </acl>
 </rule>
 </xacl>
 </policy>

 </document>

Semantics and Syntax

Meaning?:
> Alice has Read Write Privilege on content
elements
> Bob has only Read Privilege on content
elements
> By default, other users have no privilege on
content elements

Tuesday, June 8, 2010

Why Semantics in security & privacy?

 <policy>
 <xacl>
 <object href="id(contents)"/>
 <rule id="rule1">
 <acl>
 <subject><uid>Alice</uid></subject>
 <privilege type="read" sign="+"/>
 <privilege type="write" sign="+"/>
 </acl>
 </rule>
 <rule id="rule2">
 <acl>
 <subject><uid>Bob</uid></subject>
 <privilege type="read" sign="+"/>
 </acl>
 </rule>
 <rule id="rule3">
 <acl>
 <subject></subject>
 <privilege type="read" sign="-"/>
 <privilege type="write" sign="-"/>
 </acl>
 </rule>
 </xacl>
 </policy>

 </document>

Semantics and Syntax

Meaning?:
> Alice has Read Write Privilege on content
elements
> Bob has only Read Privilege on content
elements
> By default, other users have no privilege on
content elements

Why Alice has
different privilege

than Bob?

Why Dave has no
access to the contents?

Tuesday, June 8, 2010

Why Semantics in security & privacy?

 <policy>
 <xacl>
 <object href="id(contents)"/>
 <rule id="rule1">
 <acl>
 <subject><uid>Alice</uid></subject>
 <privilege type="read" sign="+"/>
 <privilege type="write" sign="+"/>
 </acl>
 </rule>
 <rule id="rule2">
 <acl>
 <subject><uid>Bob</uid></subject>
 <privilege type="read" sign="+"/>
 </acl>
 </rule>
 <rule id="rule3">
 <acl>
 <subject></subject>
 <privilege type="read" sign="-"/>
 <privilege type="write" sign="-"/>
 </acl>
 </rule>
 </xacl>
 </policy>

 </document>

Semantics and Syntax

Meaning?:
> Alice has Read Write Privilege on content
elements
> Bob has only Read Privilege on content
elements
> By default, other users have no privilege on
content elements

Why Alice has
different privilege

than Bob?

Why Dave has no
access to the contents?

Alice Bob Dave

Group A

Active Passive

Document

Tuesday, June 8, 2010

Alice

Alice Bob Dave

Group A

Active Passive

Document

Tuesday, June 8, 2010

Alice

Alice

Bob

Katherin

John

Dave

T=0.9

T=0.2

T=0.9

Alice Bob Dave

Group A

Active Passive

Document

Tuesday, June 8, 2010

Alice

Alice

Bob

Katherin

John

Dave

T=0.9

T=0.2

T=0.9

Alice Bob Dave

Group A

Active Passive

Document

Tuesday, June 8, 2010

Alice

Alice

Bob

Katherin

John

Dave

T=0.9

T=0.2

T=0.9

Security => Bob´s contents
 If <Group>

 If < T < 0.8 >
 then
 If <Ski>

 If <Friend>
 If < T > 0.8 >
 then
 Anyone!

View

DL

NA

Alice Bob Dave

Group A

Active Passive

Document

Tuesday, June 8, 2010

Alice

Alice

Bob

Katherin

John

Dave

T=0.9

T=0.2

T=0.9

Security => Bob´s contents
 If <Group>

 If < T < 0.8 >
 then
 If <Ski>

 If <Friend>
 If < T > 0.8 >
 then
 Anyone!

View

DL

NA

Privacy => Bob´s profile
 If <Group>

 then
 If <Group>

 If < T > 0.8 >
 then
 A If <Group>

 If <Friend>
 If < T > 0.8 >
 then

email

phone

location

Alice Bob Dave

Group A

Active Passive

Document

Tuesday, June 8, 2010

Constraints!

 Group
 Role
 Relation
 Attributes
 Context

Tuesday, June 8, 2010

Constraints!

 Group
 Role
 Relation
 Attributes
 Context

Requirements!

Tuesday, June 8, 2010

Constraints!

 Group
 Role
 Relation
 Attributes
 Context

Flexibility & expressivity
Personalization
Granularity
Manageability and maintainability
Scalability

Requirements!

Tuesday, June 8, 2010

Motivation: Semantic Technologies
Application of Semantic technologies

Tuesday, June 8, 2010

Motivation: Semantic Technologies
Application of Semantic technologies

Tuesday, June 8, 2010

Motivation: Semantic Technologies

- access decisions: granting access requires deriving new facts based
on existing facts - a potential areas of Semantic Technology due to its
reasoning capabilities

Application of Semantic technologies

Tuesday, June 8, 2010

Motivation: Semantic Technologies

- access decisions: granting access requires deriving new facts based
on existing facts - a potential areas of Semantic Technology due to its
reasoning capabilities

Application of Semantic technologies

Non-semantic (e.g. ACL) Semantically Enhanced

Tuesday, June 8, 2010

Motivation: Semantic Technologies

- access decisions: granting access requires deriving new facts based
on existing facts - a potential areas of Semantic Technology due to its
reasoning capabilities

Application of Semantic technologies

Non-semantic (e.g. ACL) Semantically Enhanced

Complexity in constraints

Maintenance &
modification

Easiness

Tuesday, June 8, 2010

Motivation: Semantic Technologies

- access decisions: granting access requires deriving new facts based
on existing facts - a potential areas of Semantic Technology due to its
reasoning capabilities

Application of Semantic technologies

Non-semantic (e.g. ACL) Semantically Enhanced

Complexity in constraints

Maintenance &
modification

Easiness

+

+

+

Tuesday, June 8, 2010

Applicability - use cases scenario
On the Web: Social Network

On the Device: Home Network

Figure 11. The content is shared with Bob on the TV screen.

TV

STB

user

Home environment

Access

Server

user

Figure 10. A connected home scenario.

Figure 9. The SPARQLer with SPARQL queries in Web Application.

Joseki is an HTTP engine supports SPARQL query
processor (called SPARQLer) in a Web Application. Fig.
9 shows snapshot of the installed Joseki instance with
SPARQL queries. The queries are generated from the
access handler in response to a request from the Web
Application.

VII. APPLICATION SCENARIOS

This section demonstrates the applicability of the
proposed access authorization model in practical use case
scenarios.

A. Content sharing through networked devices
Fig. 10 depicts a connected home scenario which is

typically equipped with devices such as mobile phones,
computers, Set-top-box (STB), and a TV. A user can
utilize the infrastructure to relish personalized content
sharing. The STB works as gateway and provides
connectivity, management and access to contents. The
entire back end of the system (fig. 5) was built on an
STB. The knowledge base and the reasoning process
were maintained in an external server. As real-time
reasoning over large ontology may not be efficient [22],
we propose to adopt an event-based (e.g. modification or
addition of knowledge base and policies) or periodical
reasoning and thereby the knowledge-cache is updated
with the access authorization decisions. The users were
authenticated using the preregistered Bluetooth MAC
address of the devices. The notion of such connected
home is already presented in ITEA WellCom project (a
European Union project).

For instance, Alice wants to share a recently recorded
TV program with Bob who has similar interests as Alice.
Alice already defined an access policy and when
someone from her contact group (Friend here) wants to
access that specific TV program the system evaluates the
policies against the constraints. If the request satisfies the
constraints then the system allows access to that
particular content. Fig. 11 demonstrates the preferred

contents of Bob (close friend of Alice) on the TV screen
where English Football was shared by Alice.

B. Content sharing through social networks
This section introduces a very common scenario of a

social network. Currently, people use social networks to
share contents such as video, audio, pictures etc. People
can share and access contents based on their
relationships. With the assistance of constraints in the
authorization policy, user can have more fine grained
control on the contents to enhance security and privacy.
Consider the example of social aware school where
school has its social graph containing information about
students, parents and their staff etc. The school has
contents of their annual ceremony and they want to share
with parents and staff members. The school publishes the
contents on social network and defines access
authorization policy based on the constraints (trust,
relation, distance). The school’s social network evaluates
the policy and shares the contents with all members of
school social graph who meets the constraints defined in
the policy.

VIII. CONCLUSION

In this paper we proposed a personalized access
authorization model that can support fine grained access
control to share contents on the Web or at connected
devices. The model takes into account the complex real
life social relations to formulate access constraints. We
implemented the model using the capabilities of semantic
technologies.

Though the use of semantic technologies leads to
advantages such as human understandability, easier
extensibility, machine interpretability and automatic
reasoning, there exist some limitations too. Scalability is
a big issue for ontology management and reasoning.
Real-time reasoning over very large ontology may not
yield results in required time. One of the solutions can be
to populate the results beforehand in a separate
knowledge base and query that knowledge on real time
for fetching the decisions. SWRL brings in some design
and use restrictions for example it cannot support ‘OR’
clauses, explicit universal (!) and existential quantifiers
(") which could not make policies more realistic.

The proposed access authorization model contains a
knowledge base and user defined access authorization
policies. By separating the knowledge base and reasoning
process from the system back end, we decoupled the
access control part of the system from the content sharing
and delivery part. This gives user complete control over

56 CHAPTER 6. CONCLUSION

PHILIPS STB

NFC Reader Module for STB

USB Interconnector
for NFC Reader

PHILIPS STBNFC Enabled Mobile
Phone

Figure 6.1: NFC enabled mobile phone based authentication for accessing content through

STB.

order to derive the access authorization decisions. Section 4.8 presented the limitation of

the semantic technologies. There are several intrinsic limitations of semantic technologies.

For example, OWL and SWRL share Open World Assumption (OWA) and hence every

detail of knowledge has to be explicitly specified in the ontology. The immaturity of the

technology itself is responsible for some other limitations, such as SWRL cannot support

explicit universal (∀) and existential quantifiers (∃). As the use of semantic technologies

introduces several advantages, e.g. machine interpretability and manipulability, reason-

ing, it is justified to embrace these limitations. While applying the semantic technologies

for access authorization, the following limitations were discovered,

• Not all the processes of the initial system implementation happen automatically.

Processes, such as triggering of the event-based or periodical reasoning, update of

ontology with new knowledge facts, fetching the access authorization decisions of

the updated ontology, mapping of ontologies for decentralized architecture have been

performed manually.

• Manual mapping of the ontology elements becomes a tedious job in distributed

ontologies as the number of relations between the ontology elements increases sig-

nificantly for the distributed ontologies. Troubleshooting of such ontologies is even

more difficult.

• In response to the queries originated from the users, the system should initiate the

reasoning process to derive access authorization decisions. The proposed architec-

ture cannot handle real time reasoning because of high computational complexity

involved in the reasoning.

• It is difficult to design the ontologies and authorization policies for a non-expert

Tuesday, June 8, 2010

Semantic technologies

KB
Policy

Subject Object Privilege

Actions Attribute Context

..

..
Properties Properties

Rules Queries

XML

RDF

OWL

SWRL
SPARQL
SQWRL

Execution engine

Access authorization decisions

Tuesday, June 8, 2010

Decentralization

KB

Policy

KB1 KB2 ... KBn

Portable social graph to virtual
community networks

Motivation:
Privacy, user-centric + enhanced control
Better management and maintenance

Mapping

Tuesday, June 8, 2010

Decentralization

KB

Policy

KB1 KB2 ... KBn

Portable social graph to virtual
community networks

Motivation:
Privacy, user-centric + enhanced control
Better management and maintenance

Mapping

KB1 KB2 ... KBn

Policy1 Policy2 ... Policyn

KB

Policy

Portable social graph + policy
Mapping

Tuesday, June 8, 2010

Expressivity Vs. complexity!

Challenges!

Tuesday, June 8, 2010

Expressivity Vs. complexity!

Challenges!

Secure Connected Home: where the semantic technologies meet the device community 398

hasAccessTo and canDelegatePrivilegeTo. They indicate
‘which contents or services a user can access’ and ‘who
can delegate a specific privilege of accessing contents to
whom’. The inferred instances are exported to the
knowledge-cache because the SPARQL queries sent by
the enforcement point would require these answers. As we
have not considered the duration of delegation, to revoke
the delegation administrator has to delete the
canDelegatePrivilegeTo relationship explicitly from the
knowledge base.

7.2 User Interface
A user interface of the application is developed through
which one can access the home contents using the TV.
Figure 8 illustrates an early prototype of such user
interface where we only tried to show access to videos
with certain privileges. In this example, Alice, being a
child, age under 15, can access her contents, but contents
like ‘Kill Bill’ need explicit authentication by the parents.

In response to the HTTP/SOAP request from the
application, the enforcement point sends SPARQL queries
and processes the results. We used Exhibit API10 to
process these results. The code snippet of constructed
query to answer, ‘What resources/services are accessible
by user and to whom a user can delegate its access right?’
is given below:
PREFIX SemID: <http://myhomecontent.com/SemID#>
SELECT ?ID ?hasAccessTo ?canDelegateRoleTo
FROM http://myhomecontent.com/SemID.owl
WHERE
{
?Identity SemID:ID ?ID
?Identity SemID:hasAccessTo ?hasAccessTo
?IdentitySemID:canDelegateRoleTo ?canDelegateRoleTo
}

Figure 9 shows a screenshot which was appeared in the
TV screen (attached with STB) as soon as Bob has been
authenticated. It shows the preferred contents of Bob (this
scenario requires little modification of the ontology,
though the fundamental principles are the same as
described in this paper).

8. Discussion
This section introduces analytical discussions on design
and performance issues related to the proposed
architecture. The following issues will be discussed in this

section: complexity introduced by the enhanced
granularity of constraints, performance issues relevant to
the reasoning process.

Figure 9. Preferred contents of Bob appeared in the TV.

)?,(?
)?,(?Pr)(?)?,(?Pr

)(?)?,(?)(?

ZIDohasAccessT
YZivilegeneedZContentsYRivilegehas

RFamilyRIDhasRoleIDIdentity

10 Exhibit 2.0, http://simile.mit.edu/exhibit/ [accessed on
June 21, 2009]

8.1. Enhanced granularity vs. complexity
Increased granularity in the constraints can contribute to
greater control in access but at the cost of higher
complexity of rules. Access authorization policies are
represented through SWRL rules. Higher granularity of
access constraints in policy makes the rules increasingly
complex and thus rule execution requires more
computation of ontology elements. In order to
demonstrate this phenomenon, following three rules are
designed with increasing complexity.

Figure 8. A sample page showing the contents one can

access when authenticated and authorized.

Rule 1:

Rule 2:

)?,(?
)?,(?Pr)(?)?,(?Pr

)15,(?:)?,(?
)(?)?,(?)(?

ZIDohasAccessT
YZivilegeneedZContentsYRivilegehas

yngreaterThaswrlbyIDhasAge
RFamilyRIDhasRoleIDIdentity

Rule 3:

)?,(?
)?,(?Pr)(?)?,(?Pr

)7.0,(?:)?,(?
)15,(?:)?,(?

)(?)?,(?)(?

ZIDohasAccessT
YZivilegeneedZContentsYRivilegehas

xlessThanswrlbxIDvelhasTrustle
yngreaterThaswrlbyIDhasAge

RFamilyRIDhasRoleIDIdentity

 Rule 1 contains the community constraint stating only
members of the ‘family’ can access specific contents.
Rule 2 adds age restriction on top of the community
constraint. Rule 3 is the most complex among the three
rules and it includes age and trust restrictions along with
the community constraint. In order to do reasoning, the
ontology elements associated with these rules are exported
to the reasoner. Figure 10 shows that the most complex
rule execution involves the processing of the highest
number ontology elements. Though the number of OWL
classes and OWL instances are same for every rule, the
number of OWL property axiom is increasing with the
increasing complexity of the rules. The increasing
processing of the rules requires more computational
power. If the computational power remains constant, the
increasing processing takes more time to compute results.
Therefore among the three rules, rule 3 takes the highest
time to infer new knowledge.

Tuesday, June 8, 2010

Expressivity Vs. complexity!

Challenges!

Secure Connected Home: where the semantic technologies meet the device community 398

hasAccessTo and canDelegatePrivilegeTo. They indicate
‘which contents or services a user can access’ and ‘who
can delegate a specific privilege of accessing contents to
whom’. The inferred instances are exported to the
knowledge-cache because the SPARQL queries sent by
the enforcement point would require these answers. As we
have not considered the duration of delegation, to revoke
the delegation administrator has to delete the
canDelegatePrivilegeTo relationship explicitly from the
knowledge base.

7.2 User Interface
A user interface of the application is developed through
which one can access the home contents using the TV.
Figure 8 illustrates an early prototype of such user
interface where we only tried to show access to videos
with certain privileges. In this example, Alice, being a
child, age under 15, can access her contents, but contents
like ‘Kill Bill’ need explicit authentication by the parents.

In response to the HTTP/SOAP request from the
application, the enforcement point sends SPARQL queries
and processes the results. We used Exhibit API10 to
process these results. The code snippet of constructed
query to answer, ‘What resources/services are accessible
by user and to whom a user can delegate its access right?’
is given below:
PREFIX SemID: <http://myhomecontent.com/SemID#>
SELECT ?ID ?hasAccessTo ?canDelegateRoleTo
FROM http://myhomecontent.com/SemID.owl
WHERE
{
?Identity SemID:ID ?ID
?Identity SemID:hasAccessTo ?hasAccessTo
?IdentitySemID:canDelegateRoleTo ?canDelegateRoleTo
}

Figure 9 shows a screenshot which was appeared in the
TV screen (attached with STB) as soon as Bob has been
authenticated. It shows the preferred contents of Bob (this
scenario requires little modification of the ontology,
though the fundamental principles are the same as
described in this paper).

8. Discussion
This section introduces analytical discussions on design
and performance issues related to the proposed
architecture. The following issues will be discussed in this

section: complexity introduced by the enhanced
granularity of constraints, performance issues relevant to
the reasoning process.

Figure 9. Preferred contents of Bob appeared in the TV.

)?,(?
)?,(?Pr)(?)?,(?Pr

)(?)?,(?)(?

ZIDohasAccessT
YZivilegeneedZContentsYRivilegehas

RFamilyRIDhasRoleIDIdentity

10 Exhibit 2.0, http://simile.mit.edu/exhibit/ [accessed on
June 21, 2009]

8.1. Enhanced granularity vs. complexity
Increased granularity in the constraints can contribute to
greater control in access but at the cost of higher
complexity of rules. Access authorization policies are
represented through SWRL rules. Higher granularity of
access constraints in policy makes the rules increasingly
complex and thus rule execution requires more
computation of ontology elements. In order to
demonstrate this phenomenon, following three rules are
designed with increasing complexity.

Figure 8. A sample page showing the contents one can

access when authenticated and authorized.

Rule 1:

Rule 2:

)?,(?
)?,(?Pr)(?)?,(?Pr

)15,(?:)?,(?
)(?)?,(?)(?

ZIDohasAccessT
YZivilegeneedZContentsYRivilegehas

yngreaterThaswrlbyIDhasAge
RFamilyRIDhasRoleIDIdentity

Rule 3:

)?,(?
)?,(?Pr)(?)?,(?Pr

)7.0,(?:)?,(?
)15,(?:)?,(?

)(?)?,(?)(?

ZIDohasAccessT
YZivilegeneedZContentsYRivilegehas

xlessThanswrlbxIDvelhasTrustle
yngreaterThaswrlbyIDhasAge

RFamilyRIDhasRoleIDIdentity

 Rule 1 contains the community constraint stating only
members of the ‘family’ can access specific contents.
Rule 2 adds age restriction on top of the community
constraint. Rule 3 is the most complex among the three
rules and it includes age and trust restrictions along with
the community constraint. In order to do reasoning, the
ontology elements associated with these rules are exported
to the reasoner. Figure 10 shows that the most complex
rule execution involves the processing of the highest
number ontology elements. Though the number of OWL
classes and OWL instances are same for every rule, the
number of OWL property axiom is increasing with the
increasing complexity of the rules. The increasing
processing of the rules requires more computational
power. If the computational power remains constant, the
increasing processing takes more time to compute results.
Therefore among the three rules, rule 3 takes the highest
time to infer new knowledge.

Tuesday, June 8, 2010

Expressivity Vs. complexity!

399 Chowdhury, Alam and Noll

8.2. Performance of reasoning process
The reasoning process executes the rules and derives the
access authorization decisions. Due to the resource
limitations, STB is not capable to perform the reasoning
to answer the access request queries it receives. That is
why, the reasoner has been placed at an external server
(Semantic Policy Engine). The STB holds only the
Knowledge-cache which is updated with the results of the
reasoning process. Figure 11 shows the reasons why
reasoning in STB is impractical. In this figure, we include
the time required for computing inferred instances and for
updating the knowledge base with the increase of content
instances. We also measured the time for single as well as
multiple simultaneous queries. All the measurements were
done in a desktop PC based on Windows XP with a P4 2.0
GHz processor and 1 GB RAM which is much more
powerful than the STBs.

Latency11 is one of the QoS requirements for Web
services [8]. Apart from the network delays, latency
includes the request processing time. According to Cisco,
latency for streaming video should be no more than 4 to 5
seconds [16]. The figure shows that for fairly small
number of contents, only the reasoning and update
processes are taking quite a significant amount of time.
The situation aggravates for multiple simultaneous
queries. The reasoning process is impractical with current
hardware in STBs. Considering the reasoning
performance, the real time reasoning with the reasoner
located in server is still a challenging issue. Therefore, to
reduce the latency in service delivery, we suggest here
periodical or event-based reasoning.

1 2 3

10

20

30

40

50

60

Rules

N
um

be
r o

f o
nt

ol
og

y
el

em
en

ts
 e

xp
or

te
d

fo
r r

ea
so

ni
ng

OWL Classes
OWL Instances
OWL Property axioms

Figure 10. Number of ontology elements exported to the
reasoner for the execution of rules 1, 2, 3.

9. Related Work
In this paper, access authorization is accomplished using
policies. Policies are familiar approach to protect security
and privacy of users in distributed systems [9] and have
been the subject of extensive research in recent years [20].
This chapter introduces discussions on granularity of
constraints in policies, policy specification languages and
evaluates our approach according to established policy
specification criteria.

Constraints are important protection means integrated
with most of the access control mechanism [29]. Rule-
based approaches have been widely used to specify
constraints formally or informally. Simon and Zurko [30]
developed natural language based rule format to specify
constraints. Kuhn [31], Sandhu et al. [32], Gligor et al.
[33], and Yang et al. introduced variety of formal rule-
based approaches for constraints specification. This paper
adopted formal specification of constraints through rules
as they are computer interpretable. Providing sufficient
granularity in access constraints is an important criterion
to ensure personalized access control. To achieve this, we
included several attributes of users’, such as age, trust,
and community to device access constraints in
authorization policies.

6 12 18 24
0

0.2

0.4

0.6

0.8

Ti
m

e
to

 c
om

pu
te

 (s
ec

.)

(a)

6 12 18 24
0

0.2

0.4

0.6

Number of instances of Class:Contents

Ti
m

e
to

 u
pd

at
e

(s
ec

.)

(b)

8 queries
4 queries
single query

Figure 11. (a) Time to compute inferred instances.

(b) Time to update the knowledge base.

The distributed networks, such as Internet and
ubiquitous computing environments lack central control
and their users are not all predetermined. In this regard,
trust-based access control in distributed networks provides
the required flexibility [28]. This paper included trust as
constraint in access authorization policies. Though the
proposed approach has central control and users are
predefined, trust is seen as an additional tool for providing
access granularity. We also assumed that the proposed
system was built for a home based community
environment. It was not intended for applications in the
Internet.

A concept of trust was brought in [20], [21] to provide
access to community resources and privacy of the
community. Massa in his paper [19] suggested the use of
trust metric to represent the closeness among individuals.
In this work, we included the trust metric to design the
access authorization policies. Though the metric values
are statically defined, the values can be dynamically

11 Latency is the round-trip delay between sending a request and
receiving the response.

Challenges!

Secure Connected Home: where the semantic technologies meet the device community 398

hasAccessTo and canDelegatePrivilegeTo. They indicate
‘which contents or services a user can access’ and ‘who
can delegate a specific privilege of accessing contents to
whom’. The inferred instances are exported to the
knowledge-cache because the SPARQL queries sent by
the enforcement point would require these answers. As we
have not considered the duration of delegation, to revoke
the delegation administrator has to delete the
canDelegatePrivilegeTo relationship explicitly from the
knowledge base.

7.2 User Interface
A user interface of the application is developed through
which one can access the home contents using the TV.
Figure 8 illustrates an early prototype of such user
interface where we only tried to show access to videos
with certain privileges. In this example, Alice, being a
child, age under 15, can access her contents, but contents
like ‘Kill Bill’ need explicit authentication by the parents.

In response to the HTTP/SOAP request from the
application, the enforcement point sends SPARQL queries
and processes the results. We used Exhibit API10 to
process these results. The code snippet of constructed
query to answer, ‘What resources/services are accessible
by user and to whom a user can delegate its access right?’
is given below:
PREFIX SemID: <http://myhomecontent.com/SemID#>
SELECT ?ID ?hasAccessTo ?canDelegateRoleTo
FROM http://myhomecontent.com/SemID.owl
WHERE
{
?Identity SemID:ID ?ID
?Identity SemID:hasAccessTo ?hasAccessTo
?IdentitySemID:canDelegateRoleTo ?canDelegateRoleTo
}

Figure 9 shows a screenshot which was appeared in the
TV screen (attached with STB) as soon as Bob has been
authenticated. It shows the preferred contents of Bob (this
scenario requires little modification of the ontology,
though the fundamental principles are the same as
described in this paper).

8. Discussion
This section introduces analytical discussions on design
and performance issues related to the proposed
architecture. The following issues will be discussed in this

section: complexity introduced by the enhanced
granularity of constraints, performance issues relevant to
the reasoning process.

Figure 9. Preferred contents of Bob appeared in the TV.

)?,(?
)?,(?Pr)(?)?,(?Pr

)(?)?,(?)(?

ZIDohasAccessT
YZivilegeneedZContentsYRivilegehas

RFamilyRIDhasRoleIDIdentity

10 Exhibit 2.0, http://simile.mit.edu/exhibit/ [accessed on
June 21, 2009]

8.1. Enhanced granularity vs. complexity
Increased granularity in the constraints can contribute to
greater control in access but at the cost of higher
complexity of rules. Access authorization policies are
represented through SWRL rules. Higher granularity of
access constraints in policy makes the rules increasingly
complex and thus rule execution requires more
computation of ontology elements. In order to
demonstrate this phenomenon, following three rules are
designed with increasing complexity.

Figure 8. A sample page showing the contents one can

access when authenticated and authorized.

Rule 1:

Rule 2:

)?,(?
)?,(?Pr)(?)?,(?Pr

)15,(?:)?,(?
)(?)?,(?)(?

ZIDohasAccessT
YZivilegeneedZContentsYRivilegehas

yngreaterThaswrlbyIDhasAge
RFamilyRIDhasRoleIDIdentity

Rule 3:

)?,(?
)?,(?Pr)(?)?,(?Pr

)7.0,(?:)?,(?
)15,(?:)?,(?

)(?)?,(?)(?

ZIDohasAccessT
YZivilegeneedZContentsYRivilegehas

xlessThanswrlbxIDvelhasTrustle
yngreaterThaswrlbyIDhasAge

RFamilyRIDhasRoleIDIdentity

 Rule 1 contains the community constraint stating only
members of the ‘family’ can access specific contents.
Rule 2 adds age restriction on top of the community
constraint. Rule 3 is the most complex among the three
rules and it includes age and trust restrictions along with
the community constraint. In order to do reasoning, the
ontology elements associated with these rules are exported
to the reasoner. Figure 10 shows that the most complex
rule execution involves the processing of the highest
number ontology elements. Though the number of OWL
classes and OWL instances are same for every rule, the
number of OWL property axiom is increasing with the
increasing complexity of the rules. The increasing
processing of the rules requires more computational
power. If the computational power remains constant, the
increasing processing takes more time to compute results.
Therefore among the three rules, rule 3 takes the highest
time to infer new knowledge.

Tuesday, June 8, 2010

Expressivity Vs. complexity!

399 Chowdhury, Alam and Noll

8.2. Performance of reasoning process
The reasoning process executes the rules and derives the
access authorization decisions. Due to the resource
limitations, STB is not capable to perform the reasoning
to answer the access request queries it receives. That is
why, the reasoner has been placed at an external server
(Semantic Policy Engine). The STB holds only the
Knowledge-cache which is updated with the results of the
reasoning process. Figure 11 shows the reasons why
reasoning in STB is impractical. In this figure, we include
the time required for computing inferred instances and for
updating the knowledge base with the increase of content
instances. We also measured the time for single as well as
multiple simultaneous queries. All the measurements were
done in a desktop PC based on Windows XP with a P4 2.0
GHz processor and 1 GB RAM which is much more
powerful than the STBs.

Latency11 is one of the QoS requirements for Web
services [8]. Apart from the network delays, latency
includes the request processing time. According to Cisco,
latency for streaming video should be no more than 4 to 5
seconds [16]. The figure shows that for fairly small
number of contents, only the reasoning and update
processes are taking quite a significant amount of time.
The situation aggravates for multiple simultaneous
queries. The reasoning process is impractical with current
hardware in STBs. Considering the reasoning
performance, the real time reasoning with the reasoner
located in server is still a challenging issue. Therefore, to
reduce the latency in service delivery, we suggest here
periodical or event-based reasoning.

1 2 3

10

20

30

40

50

60

Rules

N
um

be
r o

f o
nt

ol
og

y
el

em
en

ts
 e

xp
or

te
d

fo
r r

ea
so

ni
ng

OWL Classes
OWL Instances
OWL Property axioms

Figure 10. Number of ontology elements exported to the
reasoner for the execution of rules 1, 2, 3.

9. Related Work
In this paper, access authorization is accomplished using
policies. Policies are familiar approach to protect security
and privacy of users in distributed systems [9] and have
been the subject of extensive research in recent years [20].
This chapter introduces discussions on granularity of
constraints in policies, policy specification languages and
evaluates our approach according to established policy
specification criteria.

Constraints are important protection means integrated
with most of the access control mechanism [29]. Rule-
based approaches have been widely used to specify
constraints formally or informally. Simon and Zurko [30]
developed natural language based rule format to specify
constraints. Kuhn [31], Sandhu et al. [32], Gligor et al.
[33], and Yang et al. introduced variety of formal rule-
based approaches for constraints specification. This paper
adopted formal specification of constraints through rules
as they are computer interpretable. Providing sufficient
granularity in access constraints is an important criterion
to ensure personalized access control. To achieve this, we
included several attributes of users’, such as age, trust,
and community to device access constraints in
authorization policies.

6 12 18 24
0

0.2

0.4

0.6

0.8

Ti
m

e
to

 c
om

pu
te

 (s
ec

.)

(a)

6 12 18 24
0

0.2

0.4

0.6

Number of instances of Class:Contents

Ti
m

e
to

 u
pd

at
e

(s
ec

.)

(b)

8 queries
4 queries
single query

Figure 11. (a) Time to compute inferred instances.

(b) Time to update the knowledge base.

The distributed networks, such as Internet and
ubiquitous computing environments lack central control
and their users are not all predetermined. In this regard,
trust-based access control in distributed networks provides
the required flexibility [28]. This paper included trust as
constraint in access authorization policies. Though the
proposed approach has central control and users are
predefined, trust is seen as an additional tool for providing
access granularity. We also assumed that the proposed
system was built for a home based community
environment. It was not intended for applications in the
Internet.

A concept of trust was brought in [20], [21] to provide
access to community resources and privacy of the
community. Massa in his paper [19] suggested the use of
trust metric to represent the closeness among individuals.
In this work, we included the trust metric to design the
access authorization policies. Though the metric values
are statically defined, the values can be dynamically

11 Latency is the round-trip delay between sending a request and
receiving the response.

Realtime reasoning over complex constraints

Challenges!

Secure Connected Home: where the semantic technologies meet the device community 398

hasAccessTo and canDelegatePrivilegeTo. They indicate
‘which contents or services a user can access’ and ‘who
can delegate a specific privilege of accessing contents to
whom’. The inferred instances are exported to the
knowledge-cache because the SPARQL queries sent by
the enforcement point would require these answers. As we
have not considered the duration of delegation, to revoke
the delegation administrator has to delete the
canDelegatePrivilegeTo relationship explicitly from the
knowledge base.

7.2 User Interface
A user interface of the application is developed through
which one can access the home contents using the TV.
Figure 8 illustrates an early prototype of such user
interface where we only tried to show access to videos
with certain privileges. In this example, Alice, being a
child, age under 15, can access her contents, but contents
like ‘Kill Bill’ need explicit authentication by the parents.

In response to the HTTP/SOAP request from the
application, the enforcement point sends SPARQL queries
and processes the results. We used Exhibit API10 to
process these results. The code snippet of constructed
query to answer, ‘What resources/services are accessible
by user and to whom a user can delegate its access right?’
is given below:
PREFIX SemID: <http://myhomecontent.com/SemID#>
SELECT ?ID ?hasAccessTo ?canDelegateRoleTo
FROM http://myhomecontent.com/SemID.owl
WHERE
{
?Identity SemID:ID ?ID
?Identity SemID:hasAccessTo ?hasAccessTo
?IdentitySemID:canDelegateRoleTo ?canDelegateRoleTo
}

Figure 9 shows a screenshot which was appeared in the
TV screen (attached with STB) as soon as Bob has been
authenticated. It shows the preferred contents of Bob (this
scenario requires little modification of the ontology,
though the fundamental principles are the same as
described in this paper).

8. Discussion
This section introduces analytical discussions on design
and performance issues related to the proposed
architecture. The following issues will be discussed in this

section: complexity introduced by the enhanced
granularity of constraints, performance issues relevant to
the reasoning process.

Figure 9. Preferred contents of Bob appeared in the TV.

)?,(?
)?,(?Pr)(?)?,(?Pr

)(?)?,(?)(?

ZIDohasAccessT
YZivilegeneedZContentsYRivilegehas

RFamilyRIDhasRoleIDIdentity

10 Exhibit 2.0, http://simile.mit.edu/exhibit/ [accessed on
June 21, 2009]

8.1. Enhanced granularity vs. complexity
Increased granularity in the constraints can contribute to
greater control in access but at the cost of higher
complexity of rules. Access authorization policies are
represented through SWRL rules. Higher granularity of
access constraints in policy makes the rules increasingly
complex and thus rule execution requires more
computation of ontology elements. In order to
demonstrate this phenomenon, following three rules are
designed with increasing complexity.

Figure 8. A sample page showing the contents one can

access when authenticated and authorized.

Rule 1:

Rule 2:

)?,(?
)?,(?Pr)(?)?,(?Pr

)15,(?:)?,(?
)(?)?,(?)(?

ZIDohasAccessT
YZivilegeneedZContentsYRivilegehas

yngreaterThaswrlbyIDhasAge
RFamilyRIDhasRoleIDIdentity

Rule 3:

)?,(?
)?,(?Pr)(?)?,(?Pr

)7.0,(?:)?,(?
)15,(?:)?,(?

)(?)?,(?)(?

ZIDohasAccessT
YZivilegeneedZContentsYRivilegehas

xlessThanswrlbxIDvelhasTrustle
yngreaterThaswrlbyIDhasAge

RFamilyRIDhasRoleIDIdentity

 Rule 1 contains the community constraint stating only
members of the ‘family’ can access specific contents.
Rule 2 adds age restriction on top of the community
constraint. Rule 3 is the most complex among the three
rules and it includes age and trust restrictions along with
the community constraint. In order to do reasoning, the
ontology elements associated with these rules are exported
to the reasoner. Figure 10 shows that the most complex
rule execution involves the processing of the highest
number ontology elements. Though the number of OWL
classes and OWL instances are same for every rule, the
number of OWL property axiom is increasing with the
increasing complexity of the rules. The increasing
processing of the rules requires more computational
power. If the computational power remains constant, the
increasing processing takes more time to compute results.
Therefore among the three rules, rule 3 takes the highest
time to infer new knowledge.

Tuesday, June 8, 2010

Expressivity Vs. complexity!

399 Chowdhury, Alam and Noll

8.2. Performance of reasoning process
The reasoning process executes the rules and derives the
access authorization decisions. Due to the resource
limitations, STB is not capable to perform the reasoning
to answer the access request queries it receives. That is
why, the reasoner has been placed at an external server
(Semantic Policy Engine). The STB holds only the
Knowledge-cache which is updated with the results of the
reasoning process. Figure 11 shows the reasons why
reasoning in STB is impractical. In this figure, we include
the time required for computing inferred instances and for
updating the knowledge base with the increase of content
instances. We also measured the time for single as well as
multiple simultaneous queries. All the measurements were
done in a desktop PC based on Windows XP with a P4 2.0
GHz processor and 1 GB RAM which is much more
powerful than the STBs.

Latency11 is one of the QoS requirements for Web
services [8]. Apart from the network delays, latency
includes the request processing time. According to Cisco,
latency for streaming video should be no more than 4 to 5
seconds [16]. The figure shows that for fairly small
number of contents, only the reasoning and update
processes are taking quite a significant amount of time.
The situation aggravates for multiple simultaneous
queries. The reasoning process is impractical with current
hardware in STBs. Considering the reasoning
performance, the real time reasoning with the reasoner
located in server is still a challenging issue. Therefore, to
reduce the latency in service delivery, we suggest here
periodical or event-based reasoning.

1 2 3

10

20

30

40

50

60

Rules

N
um

be
r o

f o
nt

ol
og

y
el

em
en

ts
 e

xp
or

te
d

fo
r r

ea
so

ni
ng

OWL Classes
OWL Instances
OWL Property axioms

Figure 10. Number of ontology elements exported to the
reasoner for the execution of rules 1, 2, 3.

9. Related Work
In this paper, access authorization is accomplished using
policies. Policies are familiar approach to protect security
and privacy of users in distributed systems [9] and have
been the subject of extensive research in recent years [20].
This chapter introduces discussions on granularity of
constraints in policies, policy specification languages and
evaluates our approach according to established policy
specification criteria.

Constraints are important protection means integrated
with most of the access control mechanism [29]. Rule-
based approaches have been widely used to specify
constraints formally or informally. Simon and Zurko [30]
developed natural language based rule format to specify
constraints. Kuhn [31], Sandhu et al. [32], Gligor et al.
[33], and Yang et al. introduced variety of formal rule-
based approaches for constraints specification. This paper
adopted formal specification of constraints through rules
as they are computer interpretable. Providing sufficient
granularity in access constraints is an important criterion
to ensure personalized access control. To achieve this, we
included several attributes of users’, such as age, trust,
and community to device access constraints in
authorization policies.

6 12 18 24
0

0.2

0.4

0.6

0.8

Ti
m

e
to

 c
om

pu
te

 (s
ec

.)

(a)

6 12 18 24
0

0.2

0.4

0.6

Number of instances of Class:Contents

Ti
m

e
to

 u
pd

at
e

(s
ec

.)

(b)

8 queries
4 queries
single query

Figure 11. (a) Time to compute inferred instances.

(b) Time to update the knowledge base.

The distributed networks, such as Internet and
ubiquitous computing environments lack central control
and their users are not all predetermined. In this regard,
trust-based access control in distributed networks provides
the required flexibility [28]. This paper included trust as
constraint in access authorization policies. Though the
proposed approach has central control and users are
predefined, trust is seen as an additional tool for providing
access granularity. We also assumed that the proposed
system was built for a home based community
environment. It was not intended for applications in the
Internet.

A concept of trust was brought in [20], [21] to provide
access to community resources and privacy of the
community. Massa in his paper [19] suggested the use of
trust metric to represent the closeness among individuals.
In this work, we included the trust metric to design the
access authorization policies. Though the metric values
are statically defined, the values can be dynamically

11 Latency is the round-trip delay between sending a request and
receiving the response.

Realtime reasoning over complex constraints

Challenges!

Secure Connected Home: where the semantic technologies meet the device community 398

hasAccessTo and canDelegatePrivilegeTo. They indicate
‘which contents or services a user can access’ and ‘who
can delegate a specific privilege of accessing contents to
whom’. The inferred instances are exported to the
knowledge-cache because the SPARQL queries sent by
the enforcement point would require these answers. As we
have not considered the duration of delegation, to revoke
the delegation administrator has to delete the
canDelegatePrivilegeTo relationship explicitly from the
knowledge base.

7.2 User Interface
A user interface of the application is developed through
which one can access the home contents using the TV.
Figure 8 illustrates an early prototype of such user
interface where we only tried to show access to videos
with certain privileges. In this example, Alice, being a
child, age under 15, can access her contents, but contents
like ‘Kill Bill’ need explicit authentication by the parents.

In response to the HTTP/SOAP request from the
application, the enforcement point sends SPARQL queries
and processes the results. We used Exhibit API10 to
process these results. The code snippet of constructed
query to answer, ‘What resources/services are accessible
by user and to whom a user can delegate its access right?’
is given below:
PREFIX SemID: <http://myhomecontent.com/SemID#>
SELECT ?ID ?hasAccessTo ?canDelegateRoleTo
FROM http://myhomecontent.com/SemID.owl
WHERE
{
?Identity SemID:ID ?ID
?Identity SemID:hasAccessTo ?hasAccessTo
?IdentitySemID:canDelegateRoleTo ?canDelegateRoleTo
}

Figure 9 shows a screenshot which was appeared in the
TV screen (attached with STB) as soon as Bob has been
authenticated. It shows the preferred contents of Bob (this
scenario requires little modification of the ontology,
though the fundamental principles are the same as
described in this paper).

8. Discussion
This section introduces analytical discussions on design
and performance issues related to the proposed
architecture. The following issues will be discussed in this

section: complexity introduced by the enhanced
granularity of constraints, performance issues relevant to
the reasoning process.

Figure 9. Preferred contents of Bob appeared in the TV.

)?,(?
)?,(?Pr)(?)?,(?Pr

)(?)?,(?)(?

ZIDohasAccessT
YZivilegeneedZContentsYRivilegehas

RFamilyRIDhasRoleIDIdentity

10 Exhibit 2.0, http://simile.mit.edu/exhibit/ [accessed on
June 21, 2009]

8.1. Enhanced granularity vs. complexity
Increased granularity in the constraints can contribute to
greater control in access but at the cost of higher
complexity of rules. Access authorization policies are
represented through SWRL rules. Higher granularity of
access constraints in policy makes the rules increasingly
complex and thus rule execution requires more
computation of ontology elements. In order to
demonstrate this phenomenon, following three rules are
designed with increasing complexity.

Figure 8. A sample page showing the contents one can

access when authenticated and authorized.

Rule 1:

Rule 2:

)?,(?
)?,(?Pr)(?)?,(?Pr

)15,(?:)?,(?
)(?)?,(?)(?

ZIDohasAccessT
YZivilegeneedZContentsYRivilegehas

yngreaterThaswrlbyIDhasAge
RFamilyRIDhasRoleIDIdentity

Rule 3:

)?,(?
)?,(?Pr)(?)?,(?Pr

)7.0,(?:)?,(?
)15,(?:)?,(?

)(?)?,(?)(?

ZIDohasAccessT
YZivilegeneedZContentsYRivilegehas

xlessThanswrlbxIDvelhasTrustle
yngreaterThaswrlbyIDhasAge

RFamilyRIDhasRoleIDIdentity

 Rule 1 contains the community constraint stating only
members of the ‘family’ can access specific contents.
Rule 2 adds age restriction on top of the community
constraint. Rule 3 is the most complex among the three
rules and it includes age and trust restrictions along with
the community constraint. In order to do reasoning, the
ontology elements associated with these rules are exported
to the reasoner. Figure 10 shows that the most complex
rule execution involves the processing of the highest
number ontology elements. Though the number of OWL
classes and OWL instances are same for every rule, the
number of OWL property axiom is increasing with the
increasing complexity of the rules. The increasing
processing of the rules requires more computational
power. If the computational power remains constant, the
increasing processing takes more time to compute results.
Therefore among the three rules, rule 3 takes the highest
time to infer new knowledge.

399 Chowdhury, Alam and Noll

8.2. Performance of reasoning process
The reasoning process executes the rules and derives the
access authorization decisions. Due to the resource
limitations, STB is not capable to perform the reasoning
to answer the access request queries it receives. That is
why, the reasoner has been placed at an external server
(Semantic Policy Engine). The STB holds only the
Knowledge-cache which is updated with the results of the
reasoning process. Figure 11 shows the reasons why
reasoning in STB is impractical. In this figure, we include
the time required for computing inferred instances and for
updating the knowledge base with the increase of content
instances. We also measured the time for single as well as
multiple simultaneous queries. All the measurements were
done in a desktop PC based on Windows XP with a P4 2.0
GHz processor and 1 GB RAM which is much more
powerful than the STBs.

Latency11 is one of the QoS requirements for Web
services [8]. Apart from the network delays, latency
includes the request processing time. According to Cisco,
latency for streaming video should be no more than 4 to 5
seconds [16]. The figure shows that for fairly small
number of contents, only the reasoning and update
processes are taking quite a significant amount of time.
The situation aggravates for multiple simultaneous
queries. The reasoning process is impractical with current
hardware in STBs. Considering the reasoning
performance, the real time reasoning with the reasoner
located in server is still a challenging issue. Therefore, to
reduce the latency in service delivery, we suggest here
periodical or event-based reasoning.

1 2 3

10

20

30

40

50

60

Rules

N
um

be
r o

f o
nt

ol
og

y
el

em
en

ts
 e

xp
or

te
d

fo
r r

ea
so

ni
ng

OWL Classes
OWL Instances
OWL Property axioms

Figure 10. Number of ontology elements exported to the
reasoner for the execution of rules 1, 2, 3.

9. Related Work
In this paper, access authorization is accomplished using
policies. Policies are familiar approach to protect security
and privacy of users in distributed systems [9] and have
been the subject of extensive research in recent years [20].
This chapter introduces discussions on granularity of
constraints in policies, policy specification languages and
evaluates our approach according to established policy
specification criteria.

Constraints are important protection means integrated
with most of the access control mechanism [29]. Rule-
based approaches have been widely used to specify
constraints formally or informally. Simon and Zurko [30]
developed natural language based rule format to specify
constraints. Kuhn [31], Sandhu et al. [32], Gligor et al.
[33], and Yang et al. introduced variety of formal rule-
based approaches for constraints specification. This paper
adopted formal specification of constraints through rules
as they are computer interpretable. Providing sufficient
granularity in access constraints is an important criterion
to ensure personalized access control. To achieve this, we
included several attributes of users’, such as age, trust,
and community to device access constraints in
authorization policies.

6 12 18 24
0

0.2

0.4

0.6

0.8

Ti
m

e
to

 c
om

pu
te

 (s
ec

.)

(a)

6 12 18 24
0

0.2

0.4

0.6

Number of instances of Class:Contents

Ti
m

e
to

 u
pd

at
e

(s
ec

.)

(b)

8 queries
4 queries
single query

Figure 11. (a) Time to compute inferred instances.

(b) Time to update the knowledge base.

The distributed networks, such as Internet and
ubiquitous computing environments lack central control
and their users are not all predetermined. In this regard,
trust-based access control in distributed networks provides
the required flexibility [28]. This paper included trust as
constraint in access authorization policies. Though the
proposed approach has central control and users are
predefined, trust is seen as an additional tool for providing
access granularity. We also assumed that the proposed
system was built for a home based community
environment. It was not intended for applications in the
Internet.

A concept of trust was brought in [20], [21] to provide
access to community resources and privacy of the
community. Massa in his paper [19] suggested the use of
trust metric to represent the closeness among individuals.
In this work, we included the trust metric to design the
access authorization policies. Though the metric values
are statically defined, the values can be dynamically

11 Latency is the round-trip delay between sending a request and
receiving the response.

Tuesday, June 8, 2010

Challenges!

Decentralization & computational complexity

Tuesday, June 8, 2010

Challenges!

Decentralization & computational complexity

36 CHAPTER 4. IDENTITY REPRESENTATION AND ACCESS AUTHORIZATION

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

Reasoner instance multiplier

Ti
m

e
to

 c
om

pu
te

 in
fe

rr
ed

 in
st

an
ce

s
(s

ec
.)

Centralized architecture
Decentralized architecture
Centralized architecture
Decentralized architecture

With the reasoner synchronization and update time

Without the reasoner synchronization and update time

Figure 4.8: Time to compute inferred instances (centralized vs decentralized architecture)
presented in [54].

inferred instances which represent the access authorization decisions. The time required
to compute the inferred instances is measured for both centralized and decentralized ap-
proach. It is found that the decentralization of user’s and resource attributes enhances
the manageability and maintainability of the access control mechanisms. However scala-
bility of the distributed approach is a real concern in terms of efficiency of the reasoning
process. Figure 4.8 compares decentralized approach with its centralized counterpart in
terms of the time required to compute inferred instances. Figure shows that the reasoning
in decentralized architecture is computationally expensive and therefore it requires more
time. The detail description of the architecture and reasoning process can be found in
part II of the thesis.

The proposed distributed architecture requires mapping of corresponding elements
of the ontologies. This multiplies the number of OWL constructs exported to the rule
execution engine which degrades reasoning performance. Figure 4.9 shows the number of
ontology elements required to be exported to the reasoner to compute inferred instances.
It shows that the distributed architecture needs to handle more ontology elements during
the reasoning compared with its centralized counterpart. Such an architecture may not be
practical for systems that requires real-time access authorization decisions. To mitigate
this problem, this research proposed periodical or event-based reasoning [56]. These events
are the rule addition, rule modification, knowledge base modification etc.

4.7 Addressing policy specification requirements
In this research, policy is an instrument to secure access to sensitive contents through
access authorization. Policies are formulated by means of rules represented using SWRL

4.7. ADDRESSING POLICY SPECIFICATION REQUIREMENTS 37

Class Instance Property OWL axiom Total
0

20

40

60

80

100

120

140

160

180

Export of ontology elements to the reasoner

Nu
m

be
r o

f e
le

m
en

ts

Centralized architecture
Decentralized architecture

Figure 4.9: The number of ontology elements exported to the reasoner (centralized vs

decentralized architecture) presented in [54].

and SQWRL with underlying support of ontologies. Section 3.3 introduced policy spec-

ification criteria. This section evaluates the proposed access authorization policy design

fundamentals.

The ontologies are designed using OWL. According to Baker [87], OWL has the ca-

pability to provide well-defined, structured and intuitive syntax of representing domain

knowledge. SWRL allows specification of conditions which have to be met to facilitate

user’s access to a system or its resources. Devising access constraints requires mathe-

matical operations. This is achieved by SWRL built-ins which can support comparisons

and many mathematical operations. SWRL built-ins can manipulate boolean values, in-

tegers, floats, string, date etc. SWRL supports the use of OWL class expressions, such as

cardinality constraint on property 5 in rules. But SWRL cannot support disjunction of

atoms. Therefore policies cannot have ‘OR’ clauses. Nevertheless, the proposed policies

have necessary expressivity to formulate complicated access constraints. Monotonicity is

one of the policy specification criteria. OWL and SWRL both are based on monotonic

logics [88, 89].

Another policy specification criterion is the ability to carry out some non-trivial actions

during the execution of policies. A rule execution engine records some basic information

in a log file, e.g. the time required to execute a policy, the time required to update the

database. This does not require specifying explicit actions within policies. The policies

in this research support a very basic delegation of access rights. Though the duration

of transfer has not been specified but the mechanism has the capacity to include this

feature. Therefore, the proposed policy specification mechanism can be extended with

new features. Table 4.2 evaluates the proposed policy specification language compared

5A cardinality constraint puts constraints on the number of values a property can take in the context
of a particular class description.

Penalty?

Tuesday, June 8, 2010

Challenges!

Decentralization & computational complexity

36 CHAPTER 4. IDENTITY REPRESENTATION AND ACCESS AUTHORIZATION

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

Reasoner instance multiplier

Ti
m

e
to

 c
om

pu
te

 in
fe

rr
ed

 in
st

an
ce

s
(s

ec
.)

Centralized architecture
Decentralized architecture
Centralized architecture
Decentralized architecture

With the reasoner synchronization and update time

Without the reasoner synchronization and update time

Figure 4.8: Time to compute inferred instances (centralized vs decentralized architecture)
presented in [54].

inferred instances which represent the access authorization decisions. The time required
to compute the inferred instances is measured for both centralized and decentralized ap-
proach. It is found that the decentralization of user’s and resource attributes enhances
the manageability and maintainability of the access control mechanisms. However scala-
bility of the distributed approach is a real concern in terms of efficiency of the reasoning
process. Figure 4.8 compares decentralized approach with its centralized counterpart in
terms of the time required to compute inferred instances. Figure shows that the reasoning
in decentralized architecture is computationally expensive and therefore it requires more
time. The detail description of the architecture and reasoning process can be found in
part II of the thesis.

The proposed distributed architecture requires mapping of corresponding elements
of the ontologies. This multiplies the number of OWL constructs exported to the rule
execution engine which degrades reasoning performance. Figure 4.9 shows the number of
ontology elements required to be exported to the reasoner to compute inferred instances.
It shows that the distributed architecture needs to handle more ontology elements during
the reasoning compared with its centralized counterpart. Such an architecture may not be
practical for systems that requires real-time access authorization decisions. To mitigate
this problem, this research proposed periodical or event-based reasoning [56]. These events
are the rule addition, rule modification, knowledge base modification etc.

4.7 Addressing policy specification requirements
In this research, policy is an instrument to secure access to sensitive contents through
access authorization. Policies are formulated by means of rules represented using SWRL

4.7. ADDRESSING POLICY SPECIFICATION REQUIREMENTS 37

Class Instance Property OWL axiom Total
0

20

40

60

80

100

120

140

160

180

Export of ontology elements to the reasoner

Nu
m

be
r o

f e
le

m
en

ts

Centralized architecture
Decentralized architecture

Figure 4.9: The number of ontology elements exported to the reasoner (centralized vs

decentralized architecture) presented in [54].

and SQWRL with underlying support of ontologies. Section 3.3 introduced policy spec-

ification criteria. This section evaluates the proposed access authorization policy design

fundamentals.

The ontologies are designed using OWL. According to Baker [87], OWL has the ca-

pability to provide well-defined, structured and intuitive syntax of representing domain

knowledge. SWRL allows specification of conditions which have to be met to facilitate

user’s access to a system or its resources. Devising access constraints requires mathe-

matical operations. This is achieved by SWRL built-ins which can support comparisons

and many mathematical operations. SWRL built-ins can manipulate boolean values, in-

tegers, floats, string, date etc. SWRL supports the use of OWL class expressions, such as

cardinality constraint on property 5 in rules. But SWRL cannot support disjunction of

atoms. Therefore policies cannot have ‘OR’ clauses. Nevertheless, the proposed policies

have necessary expressivity to formulate complicated access constraints. Monotonicity is

one of the policy specification criteria. OWL and SWRL both are based on monotonic

logics [88, 89].

Another policy specification criterion is the ability to carry out some non-trivial actions

during the execution of policies. A rule execution engine records some basic information

in a log file, e.g. the time required to execute a policy, the time required to update the

database. This does not require specifying explicit actions within policies. The policies

in this research support a very basic delegation of access rights. Though the duration

of transfer has not been specified but the mechanism has the capacity to include this

feature. Therefore, the proposed policy specification mechanism can be extended with

new features. Table 4.2 evaluates the proposed policy specification language compared

5A cardinality constraint puts constraints on the number of values a property can take in the context
of a particular class description.

Penalty?

Tuesday, June 8, 2010

Challenges!

Decentralization & computational complexity

Other issues!
Efficient mapping
Privacy preserving ontology mapping

36 CHAPTER 4. IDENTITY REPRESENTATION AND ACCESS AUTHORIZATION

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

Reasoner instance multiplier

Ti
m

e
to

 c
om

pu
te

 in
fe

rr
ed

 in
st

an
ce

s
(s

ec
.)

Centralized architecture
Decentralized architecture
Centralized architecture
Decentralized architecture

With the reasoner synchronization and update time

Without the reasoner synchronization and update time

Figure 4.8: Time to compute inferred instances (centralized vs decentralized architecture)
presented in [54].

inferred instances which represent the access authorization decisions. The time required
to compute the inferred instances is measured for both centralized and decentralized ap-
proach. It is found that the decentralization of user’s and resource attributes enhances
the manageability and maintainability of the access control mechanisms. However scala-
bility of the distributed approach is a real concern in terms of efficiency of the reasoning
process. Figure 4.8 compares decentralized approach with its centralized counterpart in
terms of the time required to compute inferred instances. Figure shows that the reasoning
in decentralized architecture is computationally expensive and therefore it requires more
time. The detail description of the architecture and reasoning process can be found in
part II of the thesis.

The proposed distributed architecture requires mapping of corresponding elements
of the ontologies. This multiplies the number of OWL constructs exported to the rule
execution engine which degrades reasoning performance. Figure 4.9 shows the number of
ontology elements required to be exported to the reasoner to compute inferred instances.
It shows that the distributed architecture needs to handle more ontology elements during
the reasoning compared with its centralized counterpart. Such an architecture may not be
practical for systems that requires real-time access authorization decisions. To mitigate
this problem, this research proposed periodical or event-based reasoning [56]. These events
are the rule addition, rule modification, knowledge base modification etc.

4.7 Addressing policy specification requirements
In this research, policy is an instrument to secure access to sensitive contents through
access authorization. Policies are formulated by means of rules represented using SWRL

4.7. ADDRESSING POLICY SPECIFICATION REQUIREMENTS 37

Class Instance Property OWL axiom Total
0

20

40

60

80

100

120

140

160

180

Export of ontology elements to the reasoner

Nu
m

be
r o

f e
le

m
en

ts

Centralized architecture
Decentralized architecture

Figure 4.9: The number of ontology elements exported to the reasoner (centralized vs

decentralized architecture) presented in [54].

and SQWRL with underlying support of ontologies. Section 3.3 introduced policy spec-

ification criteria. This section evaluates the proposed access authorization policy design

fundamentals.

The ontologies are designed using OWL. According to Baker [87], OWL has the ca-

pability to provide well-defined, structured and intuitive syntax of representing domain

knowledge. SWRL allows specification of conditions which have to be met to facilitate

user’s access to a system or its resources. Devising access constraints requires mathe-

matical operations. This is achieved by SWRL built-ins which can support comparisons

and many mathematical operations. SWRL built-ins can manipulate boolean values, in-

tegers, floats, string, date etc. SWRL supports the use of OWL class expressions, such as

cardinality constraint on property 5 in rules. But SWRL cannot support disjunction of

atoms. Therefore policies cannot have ‘OR’ clauses. Nevertheless, the proposed policies

have necessary expressivity to formulate complicated access constraints. Monotonicity is

one of the policy specification criteria. OWL and SWRL both are based on monotonic

logics [88, 89].

Another policy specification criterion is the ability to carry out some non-trivial actions

during the execution of policies. A rule execution engine records some basic information

in a log file, e.g. the time required to execute a policy, the time required to update the

database. This does not require specifying explicit actions within policies. The policies

in this research support a very basic delegation of access rights. Though the duration

of transfer has not been specified but the mechanism has the capacity to include this

feature. Therefore, the proposed policy specification mechanism can be extended with

new features. Table 4.2 evaluates the proposed policy specification language compared

5A cardinality constraint puts constraints on the number of values a property can take in the context
of a particular class description.

Penalty?

Tuesday, June 8, 2010

Challenges!

Decentralization & computational complexity

Other issues!
Efficient mapping
Privacy preserving ontology mapping

Limitation of tools!

36 CHAPTER 4. IDENTITY REPRESENTATION AND ACCESS AUTHORIZATION

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

Reasoner instance multiplier

Ti
m

e
to

 c
om

pu
te

 in
fe

rr
ed

 in
st

an
ce

s
(s

ec
.)

Centralized architecture
Decentralized architecture
Centralized architecture
Decentralized architecture

With the reasoner synchronization and update time

Without the reasoner synchronization and update time

Figure 4.8: Time to compute inferred instances (centralized vs decentralized architecture)
presented in [54].

inferred instances which represent the access authorization decisions. The time required
to compute the inferred instances is measured for both centralized and decentralized ap-
proach. It is found that the decentralization of user’s and resource attributes enhances
the manageability and maintainability of the access control mechanisms. However scala-
bility of the distributed approach is a real concern in terms of efficiency of the reasoning
process. Figure 4.8 compares decentralized approach with its centralized counterpart in
terms of the time required to compute inferred instances. Figure shows that the reasoning
in decentralized architecture is computationally expensive and therefore it requires more
time. The detail description of the architecture and reasoning process can be found in
part II of the thesis.

The proposed distributed architecture requires mapping of corresponding elements
of the ontologies. This multiplies the number of OWL constructs exported to the rule
execution engine which degrades reasoning performance. Figure 4.9 shows the number of
ontology elements required to be exported to the reasoner to compute inferred instances.
It shows that the distributed architecture needs to handle more ontology elements during
the reasoning compared with its centralized counterpart. Such an architecture may not be
practical for systems that requires real-time access authorization decisions. To mitigate
this problem, this research proposed periodical or event-based reasoning [56]. These events
are the rule addition, rule modification, knowledge base modification etc.

4.7 Addressing policy specification requirements
In this research, policy is an instrument to secure access to sensitive contents through
access authorization. Policies are formulated by means of rules represented using SWRL

4.7. ADDRESSING POLICY SPECIFICATION REQUIREMENTS 37

Class Instance Property OWL axiom Total
0

20

40

60

80

100

120

140

160

180

Export of ontology elements to the reasoner

Nu
m

be
r o

f e
le

m
en

ts

Centralized architecture
Decentralized architecture

Figure 4.9: The number of ontology elements exported to the reasoner (centralized vs

decentralized architecture) presented in [54].

and SQWRL with underlying support of ontologies. Section 3.3 introduced policy spec-

ification criteria. This section evaluates the proposed access authorization policy design

fundamentals.

The ontologies are designed using OWL. According to Baker [87], OWL has the ca-

pability to provide well-defined, structured and intuitive syntax of representing domain

knowledge. SWRL allows specification of conditions which have to be met to facilitate

user’s access to a system or its resources. Devising access constraints requires mathe-

matical operations. This is achieved by SWRL built-ins which can support comparisons

and many mathematical operations. SWRL built-ins can manipulate boolean values, in-

tegers, floats, string, date etc. SWRL supports the use of OWL class expressions, such as

cardinality constraint on property 5 in rules. But SWRL cannot support disjunction of

atoms. Therefore policies cannot have ‘OR’ clauses. Nevertheless, the proposed policies

have necessary expressivity to formulate complicated access constraints. Monotonicity is

one of the policy specification criteria. OWL and SWRL both are based on monotonic

logics [88, 89].

Another policy specification criterion is the ability to carry out some non-trivial actions

during the execution of policies. A rule execution engine records some basic information

in a log file, e.g. the time required to execute a policy, the time required to update the

database. This does not require specifying explicit actions within policies. The policies

in this research support a very basic delegation of access rights. Though the duration

of transfer has not been specified but the mechanism has the capacity to include this

feature. Therefore, the proposed policy specification mechanism can be extended with

new features. Table 4.2 evaluates the proposed policy specification language compared

5A cardinality constraint puts constraints on the number of values a property can take in the context
of a particular class description.

Penalty?

Tuesday, June 8, 2010

Alternative to real time reasoning!

56 CHAPTER 6. CONCLUSION

PHILIPS STB

NFC Reader Module for STB

USB Interconnector
for NFC Reader

PHILIPS STBNFC Enabled Mobile
Phone

Figure 6.1: NFC enabled mobile phone based authentication for accessing content through

STB.

order to derive the access authorization decisions. Section 4.8 presented the limitation of

the semantic technologies. There are several intrinsic limitations of semantic technologies.

For example, OWL and SWRL share Open World Assumption (OWA) and hence every

detail of knowledge has to be explicitly specified in the ontology. The immaturity of the

technology itself is responsible for some other limitations, such as SWRL cannot support

explicit universal (∀) and existential quantifiers (∃). As the use of semantic technologies

introduces several advantages, e.g. machine interpretability and manipulability, reason-

ing, it is justified to embrace these limitations. While applying the semantic technologies

for access authorization, the following limitations were discovered,

• Not all the processes of the initial system implementation happen automatically.

Processes, such as triggering of the event-based or periodical reasoning, update of

ontology with new knowledge facts, fetching the access authorization decisions of

the updated ontology, mapping of ontologies for decentralized architecture have been

performed manually.

• Manual mapping of the ontology elements becomes a tedious job in distributed

ontologies as the number of relations between the ontology elements increases sig-

nificantly for the distributed ontologies. Troubleshooting of such ontologies is even

more difficult.

• In response to the queries originated from the users, the system should initiate the

reasoning process to derive access authorization decisions. The proposed architec-

ture cannot handle real time reasoning because of high computational complexity

involved in the reasoning.

• It is difficult to design the ontologies and authorization policies for a non-expert

34 CHAPTER 4. IDENTITY REPRESENTATION AND ACCESS AUTHORIZATION

Figure 4.5: Role hierarchy defined in an ontology presented in [53].

links the class Role with another class WorkUnit. ProjectLeader, ProjectMember and
Supervisor inherit this property and thus can make relationship with a specific work unit
(department or project). It is found to be useful in eliminating redundant relationships
between the ontology entities and makes the rule specification less complex. Using ap-
propriate hierarchy the number of rules can also be reduced.

The proposed architecture supports users as member of multiple roles which might
be distinct. This is possible not only within a single organizational unit but also across
different units. When multiple roles across different organizational units are identical,
distinguishing them is crucial from an access control point of view. For example, user
X is project leader of both release 7 and 9 projects. To mitigate this problem, the
research introduces a notion of context to differentiate such identical roles. It includes
the context information by representing the scenario, ‘in which organizational unit one
plays his role’. This is how this research goes beyond the contributions of roles and
includes the context information of roles. The context awareness enhances the granularity
of access restrictions as well. Members of a role which belongs to a work unit are allowed
to access only that unit’s resources. This allows users to access distinct objects from
different units simultaneously. The complete scenario stands as follows, X can access
content C of department D when X has the role R in D. A relevant scenario has been

Figure 4.6: The results of defining multiple roles and the context of roles in an ontology
presented in [53].

described in [53], where Josef Noll has multiple roles across different organizational units.

3. ACCESS CONTROL AND PRIVACY 99

Figure 2: Classes and subclasses of ontology.

These example Rules belong to the Policy: Write. However, these access control rules
have not been explicitly defined in the modeled ontology which will be implemented in
later works. It is assumed that relevant subjects (individuals defined as CIDs in the
ontology) are going to be authenticated to their company systems through some secure
means. Though Geir Egeland is authenticated to Telenor R&I but he does not belong to
Rel9 project. Therefore he is a visitor in Rel9. Project leader can read, write or to give
the final approval of any resources of the project. Supervisors also have write privileges.
Ordinary members have Read and Write permission. A visitor should be denied to write
over the project documents.

Privacy requirements are satisfied in SemID ontology using two properties (hasVis-

ibility and hasVisibilityOfGroup). hasVisibilityOfGroup is attached to class: Role and
hasVisibility is attached to class: Identity (subclass: CID). The later is rather a general
visibility property which ensures that anyone belongs to some groups has visibility of
resources of those groups. Whereas Role based visibility (hasVisibilityOfGroup) repre-
sents the visibility of specific resources, here it is the project member details. Leader,
members and supervisors of Rel9 project have visibility of project member’s details which
the visitors cannot see. This privacy feature is introduced because sometimes a project
does not want to disclose its member details (for example contact details) to visitors.
Though Supervisors are not directly associated the project, they need to see the member
details. hasVisibilityOfGroup ensures these in SemID. ‘Who is supervisor of whom’ is
clearly defined in the ontology. This will be discussed in the next section.

Therefore, access control to project resources (excluding member details) is maintained
through Policy and Rules. Visibility of member details is provided by hasVisbilityOfGroup

property.

Knowledge base

Access auhorization policy

Subject Relation Privilege Object

Attribute
Frequency of
Interaction

Trust
Distance

C
onstraints

Access authorization Distance
(a)

Distance
(b)

Tr
us

t

Tr
us

t

Po
lic

y

has privilege

can access

Subject ObjectPrivilegeRelation

Bob
Smith
Kristin

Family
Relative
Friend

Read
Write
Delete
View

Document
Video
Photo

Picnic pic
Party pic

Data

Data

Data

is

is

su
bc

la
ss

hasPrivilege
needPrivilege

casAccess

hasRelation

hasFrequency
OfInteraction

hasTrustLevel

hasDistance

is

is

Knowledge
base

Access
Handler

Auth.
Handler

Auth.
Engine

Web
Application

STB
Query

ResponseHTTP/SOAP response

HTTP/SOAP
request

Reasoner

section II.C. We propose fine-grained access authorization
policies. The policies contain access authorization constraints
based on the multiple relationships between the communities
and their members. The formulation of the policies requires
the following preliminaries:

)(,);(, 21 MembersSCMMCommunitySCBA
;,,, whPPPPP

243

214321

,,
,

PPvelhasTrustLePhasFriend
PhasMemberPere

The definitions of the policies are as follows:
DEFINITION 1. Full access to private resources of the
in resources of

DEFINITION 2. Limited access to private resources of
individuals gets limited access to the private resources of

.1
com unity and has trust level less than 0.7.

dividuals. M gets full access to the private 1

2M when they both belong to the same community and 1M has
trust level greater or equal to 0.7.

MPMMPMAPMA 0(,),(),(),(2211

resourcesprivatesMtoaccessfullgetsM
P

'
)7.

21

1321

. M1

2M .
Definition 2 . When they both belong to the same

m 1

MPMMPMAPMAP)7.0(,),(),(),(3212211

M

resourcesprivatesMtoaccessitedgetsM 'lim 21

1

Definition 2.2. When they both belong to the different
communities but are friend to each other with trust level

DEFINITION 3. Access denied to private resources of
individuals cannot get access to the private resources of

DEFINITION 4. Full access to community resources. If

resourcescommunitytheir
toaccessfullgetMMMAPMAP 21211 &),(),(

M M

resourcescommunity
sothereachtoaccessitedgetMM

MBPMAP
'lim&

),(),(

21

211

DEFINITION 5. Limited access to community resources. If
1 and 2 belong to the different communities, they will get

limited access to each other’s community resources.

The access authorization policy definitions described above
are realized using SWRL and SQWRL. The rules are
formulated using the classes, properties and instances of the
community ontology. The Jess rule engine is used to execute
these rules. As a first step, the Jess engine converts the
relevant OWL knowledge and SWRL rules to Jess knowledge.
Then the engine executes the rules and infers the new facts
that represent the access authorization decisions. All these
actions are user driven.

greater or equal to 0.7.
MPMMPMBPMAP)7.0(,),(),(),(13212211

resourcesprivatesMtoaccessitedgetsM 'lim 21

. M1

2M when they both belong to the different communities and
also are not friend to each other.

MMPMBPMAP),(),(),(211

Fig. 5 The rules designed with SWRL rule editor.

The fig. 5 shows the SWRL rule editor and execution
environment. The fig. 6 shows the derived decisions that infer
which members can access which contents with specific
access privileges. The figure shows all the inferred facts
according to each policy definition. In practice, query handler
generates a SPARQL query for the permitted contents in
response to queries by the access requester provided the
requester is authenticated beforehand.

resourcesprivatesMtoaccessdeniedM '21

212

1M
ll and 2M belong to the same community, they will get fu

access to its resources.

Fig. 6 Execution of the policy derives the access authorization decisions.

6.3. SUGGESTIONS FOR FUTURE RESEARCH 57

Figure 6.2: A sample page showing the contents one can access through STB.

users. This is more apparent when the use case scenario requires complex access
constraints.

• The ontologies designed in this research are not generic enough. Based on the
application use case scenario, old ontologies need some modifications or extension.

6.3 Suggestions for future research
This research opens a new area of application for semantic technologies. There exist
enough scope to extend the current research in areas of security and privacy assurance.
The future research should deal with the limitations of the proposed theoretical framework
and practical implementations. Planned and potential future research areas are as follows,

• Designing generic ontologies for use case scenarios in the areas of access control in
enterprises and social networks. Thus the ontology designed once can be reused
many times by the research community. Such a generic ontology would also support
the objectives of the Semantic Web.

• Based on the proposed theoretical framework, functional architecture and imple-
mentation results, the development of a standalone prototype has been initiated in
the final phase of the research. Complete implementation of a standalone appli-
cation is the goal of the ongoing research. It requires integration of some of the
modules that are currently working as isolated parts. It is to be noted that the
inputs of some of these modules are at present fed manually.

• Mapping often needs cognitive input. Therefore, future mapping of the ontology
elements should be semi-automatic.

• Future research is planned to include real time rule execution feature in response to
external queries.

Tuesday, June 8, 2010

Knowledge
base

Decision
Knowledge

Cache

Access
Handler

Auth.
Handler

Auth.
Engine

Web
Applica

-tion

Content sharing
system back end Update

Query

ResponseHTTP/SOAP response

HTTP/SOAP
request

Knowledge
Manager
Reasoner

Figure 5. The functional architecture of a content sharing system.

Figure 7. The classes, subclasses and instances of the ontology.

Figure 6. Editor of classes, properties and instances in Protégé.

Frequency of Interaction (FI)
It represents the number of social interactions

happened in the virtual world for example as simple as
number of blog post on each other’s sites. In this paper it
is measured in monthly basis. For modeling the
authorization mechanism we define it statically but in
practice this has to be dynamically updated. The system
may need to aggregate information gathered from
multiple sources. Similar to the previous two constraints,
both ! and " are used for forming the constraints in the
policies. Example,
As Bob is a relative of Alice with frequency of
interaction 10, Bob can see Alice’s party pictures.

D. Scenarios of constraints
The following two scenarios of constraints are used
throughout this paper.
Scenario 1 The most trusted and nearest family members
with whom the frequency of interaction is the maximum.

3019.0Re !#=#!#= FIdTFamilyl
Scenario 2 The least trusted and the most distant friends
with whom the frequency of interaction is the minimum.

144.0Re "!#"#= FIdTFriendl

V. FUNCTIONAL ARCHITECTURE

In order to understand how the proposed access
authorization model fits with a content sharing
application, this section provides a functional architecture
(fig. 5) of such a system briefly describing its core
components.

The knowledge base is managed and maintained by
the knowledge manager through an interface. The
knowledge manager also facilitates the update of the
knowledge-cache through the reasoning process. The rule
based reasoner in this paper works as the policy
execution environment. The decision knowledge-cache
holds the access authorization decisions derived through
reasoning. To avoid real-time decision making, the
knowledge-cache is maintained. Access handler makes
queries to the cache. User authentication is managed
through the authentication handler. By incorporating an
external authentication engine, the framework ensures the
flexibility of using different authentication methods
varying simple username/password to mobile phone

based authentication. Upon authentication, access handler
enforces the access request by processing the requests. It
generates the SPARQL [23] queries to the decision
knowledge-cache to acquire the list of contents the
requester is allowed to access with appropriate privilege.
The SPARQL responses are generated in html format and
Access Handler forward it to the Web Application
interface.

VI. IMPLEMENTATION

This section presents the overview and results of the
implementation of the knowledge base, access
authorization policies and SPARQL query interface.

A. Knowledge base
The Protégé Ontology Editor was used for encoding the
ontology in OWL. Fig. 6 shows the instances of OWL
classes, properties and instances editor in Protégé. Fig. 7
visualizes the class-subclasses hierarchy and instances of
the ontology using Jambalaya plug-in for Protégé. In the
ontology, hasPrivilege and canAccess are the inferred
properties, and the domain and range values of these are
filled in through the reasoning process. These represent
the access authorization decisions. The knowledge base is
a static one and requires knowledge owner’s explicit
interaction for modification.

STB

Alternative to real time reasoning!

56 CHAPTER 6. CONCLUSION

PHILIPS STB

NFC Reader Module for STB

USB Interconnector
for NFC Reader

PHILIPS STBNFC Enabled Mobile
Phone

Figure 6.1: NFC enabled mobile phone based authentication for accessing content through

STB.

order to derive the access authorization decisions. Section 4.8 presented the limitation of

the semantic technologies. There are several intrinsic limitations of semantic technologies.

For example, OWL and SWRL share Open World Assumption (OWA) and hence every

detail of knowledge has to be explicitly specified in the ontology. The immaturity of the

technology itself is responsible for some other limitations, such as SWRL cannot support

explicit universal (∀) and existential quantifiers (∃). As the use of semantic technologies

introduces several advantages, e.g. machine interpretability and manipulability, reason-

ing, it is justified to embrace these limitations. While applying the semantic technologies

for access authorization, the following limitations were discovered,

• Not all the processes of the initial system implementation happen automatically.

Processes, such as triggering of the event-based or periodical reasoning, update of

ontology with new knowledge facts, fetching the access authorization decisions of

the updated ontology, mapping of ontologies for decentralized architecture have been

performed manually.

• Manual mapping of the ontology elements becomes a tedious job in distributed

ontologies as the number of relations between the ontology elements increases sig-

nificantly for the distributed ontologies. Troubleshooting of such ontologies is even

more difficult.

• In response to the queries originated from the users, the system should initiate the

reasoning process to derive access authorization decisions. The proposed architec-

ture cannot handle real time reasoning because of high computational complexity

involved in the reasoning.

• It is difficult to design the ontologies and authorization policies for a non-expert

34 CHAPTER 4. IDENTITY REPRESENTATION AND ACCESS AUTHORIZATION

Figure 4.5: Role hierarchy defined in an ontology presented in [53].

links the class Role with another class WorkUnit. ProjectLeader, ProjectMember and
Supervisor inherit this property and thus can make relationship with a specific work unit
(department or project). It is found to be useful in eliminating redundant relationships
between the ontology entities and makes the rule specification less complex. Using ap-
propriate hierarchy the number of rules can also be reduced.

The proposed architecture supports users as member of multiple roles which might
be distinct. This is possible not only within a single organizational unit but also across
different units. When multiple roles across different organizational units are identical,
distinguishing them is crucial from an access control point of view. For example, user
X is project leader of both release 7 and 9 projects. To mitigate this problem, the
research introduces a notion of context to differentiate such identical roles. It includes
the context information by representing the scenario, ‘in which organizational unit one
plays his role’. This is how this research goes beyond the contributions of roles and
includes the context information of roles. The context awareness enhances the granularity
of access restrictions as well. Members of a role which belongs to a work unit are allowed
to access only that unit’s resources. This allows users to access distinct objects from
different units simultaneously. The complete scenario stands as follows, X can access
content C of department D when X has the role R in D. A relevant scenario has been

Figure 4.6: The results of defining multiple roles and the context of roles in an ontology
presented in [53].

described in [53], where Josef Noll has multiple roles across different organizational units.

3. ACCESS CONTROL AND PRIVACY 99

Figure 2: Classes and subclasses of ontology.

These example Rules belong to the Policy: Write. However, these access control rules
have not been explicitly defined in the modeled ontology which will be implemented in
later works. It is assumed that relevant subjects (individuals defined as CIDs in the
ontology) are going to be authenticated to their company systems through some secure
means. Though Geir Egeland is authenticated to Telenor R&I but he does not belong to
Rel9 project. Therefore he is a visitor in Rel9. Project leader can read, write or to give
the final approval of any resources of the project. Supervisors also have write privileges.
Ordinary members have Read and Write permission. A visitor should be denied to write
over the project documents.

Privacy requirements are satisfied in SemID ontology using two properties (hasVis-

ibility and hasVisibilityOfGroup). hasVisibilityOfGroup is attached to class: Role and
hasVisibility is attached to class: Identity (subclass: CID). The later is rather a general
visibility property which ensures that anyone belongs to some groups has visibility of
resources of those groups. Whereas Role based visibility (hasVisibilityOfGroup) repre-
sents the visibility of specific resources, here it is the project member details. Leader,
members and supervisors of Rel9 project have visibility of project member’s details which
the visitors cannot see. This privacy feature is introduced because sometimes a project
does not want to disclose its member details (for example contact details) to visitors.
Though Supervisors are not directly associated the project, they need to see the member
details. hasVisibilityOfGroup ensures these in SemID. ‘Who is supervisor of whom’ is
clearly defined in the ontology. This will be discussed in the next section.

Therefore, access control to project resources (excluding member details) is maintained
through Policy and Rules. Visibility of member details is provided by hasVisbilityOfGroup

property.

Knowledge base

Access auhorization policy

Subject Relation Privilege Object

Attribute
Frequency of
Interaction

Trust
Distance

C
onstraints

Access authorization Distance
(a)

Distance
(b)

Tr
us

t

Tr
us

t

Po
lic

y

has privilege

can access

Subject ObjectPrivilegeRelation

Bob
Smith
Kristin

Family
Relative
Friend

Read
Write
Delete
View

Document
Video
Photo

Picnic pic
Party pic

Data

Data

Data

is

is

su
bc

la
ss

hasPrivilege
needPrivilege

casAccess

hasRelation

hasFrequency
OfInteraction

hasTrustLevel

hasDistance

is

is

Knowledge
base

Access
Handler

Auth.
Handler

Auth.
Engine

Web
Application

STB
Query

ResponseHTTP/SOAP response

HTTP/SOAP
request

Reasoner

section II.C. We propose fine-grained access authorization
policies. The policies contain access authorization constraints
based on the multiple relationships between the communities
and their members. The formulation of the policies requires
the following preliminaries:

)(,);(, 21 MembersSCMMCommunitySCBA
;,,, whPPPPP

243

214321

,,
,

PPvelhasTrustLePhasFriend
PhasMemberPere

The definitions of the policies are as follows:
DEFINITION 1. Full access to private resources of the
in resources of

DEFINITION 2. Limited access to private resources of
individuals gets limited access to the private resources of

.1
com unity and has trust level less than 0.7.

dividuals. M gets full access to the private 1

2M when they both belong to the same community and 1M has
trust level greater or equal to 0.7.

MPMMPMAPMA 0(,),(),(),(2211

resourcesprivatesMtoaccessfullgetsM
P

'
)7.

21

1321

. M1

2M .
Definition 2 . When they both belong to the same

m 1

MPMMPMAPMAP)7.0(,),(),(),(3212211

M

resourcesprivatesMtoaccessitedgetsM 'lim 21

1

Definition 2.2. When they both belong to the different
communities but are friend to each other with trust level

DEFINITION 3. Access denied to private resources of
individuals cannot get access to the private resources of

DEFINITION 4. Full access to community resources. If

resourcescommunitytheir
toaccessfullgetMMMAPMAP 21211 &),(),(

M M

resourcescommunity
sothereachtoaccessitedgetMM

MBPMAP
'lim&

),(),(

21

211

DEFINITION 5. Limited access to community resources. If
1 and 2 belong to the different communities, they will get

limited access to each other’s community resources.

The access authorization policy definitions described above
are realized using SWRL and SQWRL. The rules are
formulated using the classes, properties and instances of the
community ontology. The Jess rule engine is used to execute
these rules. As a first step, the Jess engine converts the
relevant OWL knowledge and SWRL rules to Jess knowledge.
Then the engine executes the rules and infers the new facts
that represent the access authorization decisions. All these
actions are user driven.

greater or equal to 0.7.
MPMMPMBPMAP)7.0(,),(),(),(13212211

resourcesprivatesMtoaccessitedgetsM 'lim 21

. M1

2M when they both belong to the different communities and
also are not friend to each other.

MMPMBPMAP),(),(),(211

Fig. 5 The rules designed with SWRL rule editor.

The fig. 5 shows the SWRL rule editor and execution
environment. The fig. 6 shows the derived decisions that infer
which members can access which contents with specific
access privileges. The figure shows all the inferred facts
according to each policy definition. In practice, query handler
generates a SPARQL query for the permitted contents in
response to queries by the access requester provided the
requester is authenticated beforehand.

resourcesprivatesMtoaccessdeniedM '21

212

1M
ll and 2M belong to the same community, they will get fu

access to its resources.

Fig. 6 Execution of the policy derives the access authorization decisions.

6.3. SUGGESTIONS FOR FUTURE RESEARCH 57

Figure 6.2: A sample page showing the contents one can access through STB.

users. This is more apparent when the use case scenario requires complex access
constraints.

• The ontologies designed in this research are not generic enough. Based on the
application use case scenario, old ontologies need some modifications or extension.

6.3 Suggestions for future research
This research opens a new area of application for semantic technologies. There exist
enough scope to extend the current research in areas of security and privacy assurance.
The future research should deal with the limitations of the proposed theoretical framework
and practical implementations. Planned and potential future research areas are as follows,

• Designing generic ontologies for use case scenarios in the areas of access control in
enterprises and social networks. Thus the ontology designed once can be reused
many times by the research community. Such a generic ontology would also support
the objectives of the Semantic Web.

• Based on the proposed theoretical framework, functional architecture and imple-
mentation results, the development of a standalone prototype has been initiated in
the final phase of the research. Complete implementation of a standalone appli-
cation is the goal of the ongoing research. It requires integration of some of the
modules that are currently working as isolated parts. It is to be noted that the
inputs of some of these modules are at present fed manually.

• Mapping often needs cognitive input. Therefore, future mapping of the ontology
elements should be semi-automatic.

• Future research is planned to include real time rule execution feature in response to
external queries.

Tuesday, June 8, 2010

Knowledge
base

Decision
Knowledge

Cache

Access
Handler

Auth.
Handler

Auth.
Engine

Web
Applica

-tion

Content sharing
system back end Update

Query

ResponseHTTP/SOAP response

HTTP/SOAP
request

Knowledge
Manager
Reasoner

Figure 5. The functional architecture of a content sharing system.

Figure 7. The classes, subclasses and instances of the ontology.

Figure 6. Editor of classes, properties and instances in Protégé.

Frequency of Interaction (FI)
It represents the number of social interactions

happened in the virtual world for example as simple as
number of blog post on each other’s sites. In this paper it
is measured in monthly basis. For modeling the
authorization mechanism we define it statically but in
practice this has to be dynamically updated. The system
may need to aggregate information gathered from
multiple sources. Similar to the previous two constraints,
both ! and " are used for forming the constraints in the
policies. Example,
As Bob is a relative of Alice with frequency of
interaction 10, Bob can see Alice’s party pictures.

D. Scenarios of constraints
The following two scenarios of constraints are used
throughout this paper.
Scenario 1 The most trusted and nearest family members
with whom the frequency of interaction is the maximum.

3019.0Re !#=#!#= FIdTFamilyl
Scenario 2 The least trusted and the most distant friends
with whom the frequency of interaction is the minimum.

144.0Re "!#"#= FIdTFriendl

V. FUNCTIONAL ARCHITECTURE

In order to understand how the proposed access
authorization model fits with a content sharing
application, this section provides a functional architecture
(fig. 5) of such a system briefly describing its core
components.

The knowledge base is managed and maintained by
the knowledge manager through an interface. The
knowledge manager also facilitates the update of the
knowledge-cache through the reasoning process. The rule
based reasoner in this paper works as the policy
execution environment. The decision knowledge-cache
holds the access authorization decisions derived through
reasoning. To avoid real-time decision making, the
knowledge-cache is maintained. Access handler makes
queries to the cache. User authentication is managed
through the authentication handler. By incorporating an
external authentication engine, the framework ensures the
flexibility of using different authentication methods
varying simple username/password to mobile phone

based authentication. Upon authentication, access handler
enforces the access request by processing the requests. It
generates the SPARQL [23] queries to the decision
knowledge-cache to acquire the list of contents the
requester is allowed to access with appropriate privilege.
The SPARQL responses are generated in html format and
Access Handler forward it to the Web Application
interface.

VI. IMPLEMENTATION

This section presents the overview and results of the
implementation of the knowledge base, access
authorization policies and SPARQL query interface.

A. Knowledge base
The Protégé Ontology Editor was used for encoding the
ontology in OWL. Fig. 6 shows the instances of OWL
classes, properties and instances editor in Protégé. Fig. 7
visualizes the class-subclasses hierarchy and instances of
the ontology using Jambalaya plug-in for Protégé. In the
ontology, hasPrivilege and canAccess are the inferred
properties, and the domain and range values of these are
filled in through the reasoning process. These represent
the access authorization decisions. The knowledge base is
a static one and requires knowledge owner’s explicit
interaction for modification.

STB

Alternative to real time reasoning!

56 CHAPTER 6. CONCLUSION

PHILIPS STB

NFC Reader Module for STB

USB Interconnector
for NFC Reader

PHILIPS STBNFC Enabled Mobile
Phone

Figure 6.1: NFC enabled mobile phone based authentication for accessing content through

STB.

order to derive the access authorization decisions. Section 4.8 presented the limitation of

the semantic technologies. There are several intrinsic limitations of semantic technologies.

For example, OWL and SWRL share Open World Assumption (OWA) and hence every

detail of knowledge has to be explicitly specified in the ontology. The immaturity of the

technology itself is responsible for some other limitations, such as SWRL cannot support

explicit universal (∀) and existential quantifiers (∃). As the use of semantic technologies

introduces several advantages, e.g. machine interpretability and manipulability, reason-

ing, it is justified to embrace these limitations. While applying the semantic technologies

for access authorization, the following limitations were discovered,

• Not all the processes of the initial system implementation happen automatically.

Processes, such as triggering of the event-based or periodical reasoning, update of

ontology with new knowledge facts, fetching the access authorization decisions of

the updated ontology, mapping of ontologies for decentralized architecture have been

performed manually.

• Manual mapping of the ontology elements becomes a tedious job in distributed

ontologies as the number of relations between the ontology elements increases sig-

nificantly for the distributed ontologies. Troubleshooting of such ontologies is even

more difficult.

• In response to the queries originated from the users, the system should initiate the

reasoning process to derive access authorization decisions. The proposed architec-

ture cannot handle real time reasoning because of high computational complexity

involved in the reasoning.

• It is difficult to design the ontologies and authorization policies for a non-expert

34 CHAPTER 4. IDENTITY REPRESENTATION AND ACCESS AUTHORIZATION

Figure 4.5: Role hierarchy defined in an ontology presented in [53].

links the class Role with another class WorkUnit. ProjectLeader, ProjectMember and
Supervisor inherit this property and thus can make relationship with a specific work unit
(department or project). It is found to be useful in eliminating redundant relationships
between the ontology entities and makes the rule specification less complex. Using ap-
propriate hierarchy the number of rules can also be reduced.

The proposed architecture supports users as member of multiple roles which might
be distinct. This is possible not only within a single organizational unit but also across
different units. When multiple roles across different organizational units are identical,
distinguishing them is crucial from an access control point of view. For example, user
X is project leader of both release 7 and 9 projects. To mitigate this problem, the
research introduces a notion of context to differentiate such identical roles. It includes
the context information by representing the scenario, ‘in which organizational unit one
plays his role’. This is how this research goes beyond the contributions of roles and
includes the context information of roles. The context awareness enhances the granularity
of access restrictions as well. Members of a role which belongs to a work unit are allowed
to access only that unit’s resources. This allows users to access distinct objects from
different units simultaneously. The complete scenario stands as follows, X can access
content C of department D when X has the role R in D. A relevant scenario has been

Figure 4.6: The results of defining multiple roles and the context of roles in an ontology
presented in [53].

described in [53], where Josef Noll has multiple roles across different organizational units.

3. ACCESS CONTROL AND PRIVACY 99

Figure 2: Classes and subclasses of ontology.

These example Rules belong to the Policy: Write. However, these access control rules
have not been explicitly defined in the modeled ontology which will be implemented in
later works. It is assumed that relevant subjects (individuals defined as CIDs in the
ontology) are going to be authenticated to their company systems through some secure
means. Though Geir Egeland is authenticated to Telenor R&I but he does not belong to
Rel9 project. Therefore he is a visitor in Rel9. Project leader can read, write or to give
the final approval of any resources of the project. Supervisors also have write privileges.
Ordinary members have Read and Write permission. A visitor should be denied to write
over the project documents.

Privacy requirements are satisfied in SemID ontology using two properties (hasVis-

ibility and hasVisibilityOfGroup). hasVisibilityOfGroup is attached to class: Role and
hasVisibility is attached to class: Identity (subclass: CID). The later is rather a general
visibility property which ensures that anyone belongs to some groups has visibility of
resources of those groups. Whereas Role based visibility (hasVisibilityOfGroup) repre-
sents the visibility of specific resources, here it is the project member details. Leader,
members and supervisors of Rel9 project have visibility of project member’s details which
the visitors cannot see. This privacy feature is introduced because sometimes a project
does not want to disclose its member details (for example contact details) to visitors.
Though Supervisors are not directly associated the project, they need to see the member
details. hasVisibilityOfGroup ensures these in SemID. ‘Who is supervisor of whom’ is
clearly defined in the ontology. This will be discussed in the next section.

Therefore, access control to project resources (excluding member details) is maintained
through Policy and Rules. Visibility of member details is provided by hasVisbilityOfGroup

property.

Knowledge base

Access auhorization policy

Subject Relation Privilege Object

Attribute
Frequency of
Interaction

Trust
Distance

C
onstraints

Access authorization Distance
(a)

Distance
(b)

Tr
us

t

Tr
us

t

Po
lic

y

has privilege

can access

Subject ObjectPrivilegeRelation

Bob
Smith
Kristin

Family
Relative
Friend

Read
Write
Delete
View

Document
Video
Photo

Picnic pic
Party pic

Data

Data

Data

is

is

su
bc

la
ss

hasPrivilege
needPrivilege

casAccess

hasRelation

hasFrequency
OfInteraction

hasTrustLevel

hasDistance

is

is

Knowledge
base

Access
Handler

Auth.
Handler

Auth.
Engine

Web
Application

STB
Query

ResponseHTTP/SOAP response

HTTP/SOAP
request

Reasoner

section II.C. We propose fine-grained access authorization
policies. The policies contain access authorization constraints
based on the multiple relationships between the communities
and their members. The formulation of the policies requires
the following preliminaries:

)(,);(, 21 MembersSCMMCommunitySCBA
;,,, whPPPPP

243

214321

,,
,

PPvelhasTrustLePhasFriend
PhasMemberPere

The definitions of the policies are as follows:
DEFINITION 1. Full access to private resources of the
in resources of

DEFINITION 2. Limited access to private resources of
individuals gets limited access to the private resources of

.1
com unity and has trust level less than 0.7.

dividuals. M gets full access to the private 1

2M when they both belong to the same community and 1M has
trust level greater or equal to 0.7.

MPMMPMAPMA 0(,),(),(),(2211

resourcesprivatesMtoaccessfullgetsM
P

'
)7.

21

1321

. M1

2M .
Definition 2 . When they both belong to the same

m 1

MPMMPMAPMAP)7.0(,),(),(),(3212211

M

resourcesprivatesMtoaccessitedgetsM 'lim 21

1

Definition 2.2. When they both belong to the different
communities but are friend to each other with trust level

DEFINITION 3. Access denied to private resources of
individuals cannot get access to the private resources of

DEFINITION 4. Full access to community resources. If

resourcescommunitytheir
toaccessfullgetMMMAPMAP 21211 &),(),(

M M

resourcescommunity
sothereachtoaccessitedgetMM

MBPMAP
'lim&

),(),(

21

211

DEFINITION 5. Limited access to community resources. If
1 and 2 belong to the different communities, they will get

limited access to each other’s community resources.

The access authorization policy definitions described above
are realized using SWRL and SQWRL. The rules are
formulated using the classes, properties and instances of the
community ontology. The Jess rule engine is used to execute
these rules. As a first step, the Jess engine converts the
relevant OWL knowledge and SWRL rules to Jess knowledge.
Then the engine executes the rules and infers the new facts
that represent the access authorization decisions. All these
actions are user driven.

greater or equal to 0.7.
MPMMPMBPMAP)7.0(,),(),(),(13212211

resourcesprivatesMtoaccessitedgetsM 'lim 21

. M1

2M when they both belong to the different communities and
also are not friend to each other.

MMPMBPMAP),(),(),(211

Fig. 5 The rules designed with SWRL rule editor.

The fig. 5 shows the SWRL rule editor and execution
environment. The fig. 6 shows the derived decisions that infer
which members can access which contents with specific
access privileges. The figure shows all the inferred facts
according to each policy definition. In practice, query handler
generates a SPARQL query for the permitted contents in
response to queries by the access requester provided the
requester is authenticated beforehand.

resourcesprivatesMtoaccessdeniedM '21

212

1M
ll and 2M belong to the same community, they will get fu

access to its resources.

Fig. 6 Execution of the policy derives the access authorization decisions.

6.3. SUGGESTIONS FOR FUTURE RESEARCH 57

Figure 6.2: A sample page showing the contents one can access through STB.

users. This is more apparent when the use case scenario requires complex access
constraints.

• The ontologies designed in this research are not generic enough. Based on the
application use case scenario, old ontologies need some modifications or extension.

6.3 Suggestions for future research
This research opens a new area of application for semantic technologies. There exist
enough scope to extend the current research in areas of security and privacy assurance.
The future research should deal with the limitations of the proposed theoretical framework
and practical implementations. Planned and potential future research areas are as follows,

• Designing generic ontologies for use case scenarios in the areas of access control in
enterprises and social networks. Thus the ontology designed once can be reused
many times by the research community. Such a generic ontology would also support
the objectives of the Semantic Web.

• Based on the proposed theoretical framework, functional architecture and imple-
mentation results, the development of a standalone prototype has been initiated in
the final phase of the research. Complete implementation of a standalone appli-
cation is the goal of the ongoing research. It requires integration of some of the
modules that are currently working as isolated parts. It is to be noted that the
inputs of some of these modules are at present fed manually.

• Mapping often needs cognitive input. Therefore, future mapping of the ontology
elements should be semi-automatic.

• Future research is planned to include real time rule execution feature in response to
external queries.

Tuesday, June 8, 2010

Another use case

Tuesday, June 8, 2010

Another use case

JBV

Tuesday, June 8, 2010

Another use case

JBV

 Industry Platform (e.g. Telenor Object)

Tuesday, June 8, 2010

Another use case

JBV

 Industry Platform (e.g. Telenor Object)

JBV
data processes

Process
management

Tuesday, June 8, 2010

Another use case

JBV

 Industry Platform (e.g. Telenor Object)

Critical infrastructure management
and maintenance
- secure management & maintenance
- reliable & dependable operation
- efficiency, cost reduction &
competitiveness
- safety

JBV
data processes

Process
management

Tuesday, June 8, 2010

State of the art

Approach: Access control models; Policy based access

Tuesday, June 8, 2010

State of the art

Access control
 ACL
 RBAC
 ABAC
 CWAC

Policy
 XACML
 KAOS
 Rei
 WSPL

Approach: Access control models; Policy based access

Tuesday, June 8, 2010

State of the art

Access control
 ACL
 RBAC
 ABAC
 CWAC

Policy
 XACML
 KAOS
 Rei
 WSPL

20 CHAPTER 3. SERVICE ACCESS

Access

control

models

Generic Expressivity Varying

levels of

granular-

ity

Scalability High

level

specifi-

cation

of con-

straints

Ability

to dele-

gate

Ability to

revoke

ACL Yes No No No No No Yes
RBAC No Yes Yes No Yes Yes Yes
ABAC Yes Yes Yes No Yes No No
CWAC Yes Yes Yes No Yes No No

Table 3.1: Evaluating the access control models according to the requirements.

3.3 Policy based access
Nowadays access restrictions are increasingly achieved through policies. This section
introduces the basic definition of policy, presents the policy specification criteria and
reviews different policy specification languages.

3.3.1 Introduction to policy

A policy is broadly defined as a definite course of action to determine present and future
decisions. Applying policy is nowadays a prominent approach to protect security and
privacy of users, contents and services in distributed environment. Policy specifies,

• who is allowed to perform,

• which action,

• on which objects,

depending on

• requester’s attributes (e.g. roles, relations), and

• various contextual factors (e.g. time, location).

3.3.2 Policy specification criteria

It is important to document the policy specification criteria before evaluating policy lan-
guages. These are adapted from [91] and listed as follows,

Well-defined semantics: It means unambiguous description of concept model. With-
out well-defined semantics, the model cannot be manipulated, queried and inter-
preted reliably. Its absence severely restricts the practical usability of the model.
Formal description of policies should be generic irrespective of differences in imple-
mentation of policy languages. It should be easy to grasp and is expected to have
mathematically defined semantics.

The subjacent formalism of policy should be well-defined as well. The subjacent
formalism means how the semantics of concept model over which a policy is applied,

22 CHAPTER 3. SERVICE ACCESS

of criteria to determine the policy’s applicability to requests. Among all these languages,

Rei and KAoS extensively support constraints specification. Constraints can be set on

the attributes of subjects, objects and environment. EPAL, Ponder, XACML, WSPL,

Protune support execution of actions from within the policies. However, KAoS and Rei do

not support execution of action. Access rights can be delegated through policies specified

with Ponder, Rei, Protune. EPAL, WSPL, KAoS and XACML do not support delegation

of rights. Extensibility is supported in EPAL, Ponder, and Protune. XACML supports

extensibility by including provision for adding new data types. Basic ontologies of KAoS

and Rei can be extended for a given application. However, WSPL lacks the extensibility

feature. Table 3.2 shows the complete evaluation of the policy specification languages. In

this table, ‘++’, ‘+’, and ‘-’ indicate ‘strongly support’,‘support’, and ‘do not support’

respectively. This table will be revisited in chapter 4 to evaluate the proposed policy

specification language.

Policy Well-
defined

Monotonicity Expressiveness Execution Ability Extensibility

languages semantics of condition of action to delegate
EPAL + - + + - +
KAoS ++ + ++ - - +
Protune + + + + + +
Ponder - - + + + +
Rei + + ++ - + +
XACML - - + + - +
WSPL - - + + - -

Table 3.2: Evaluating policy specification languages according to the policy specification

criteria.

3.4 Remaining access control challenges
Existing access control models and policy specification languages are able to address many

of the requirements and criteria, such as high level specification of access constraints, vary-

ing levels of granularity in constraints. Nevertheless, the requirements to support growing

number of users, increasing privacy awareness of people, need for access personalization

through complex restrictions, and decentralized system architectures may call for the ex-

tension of existing access control models and policy specification languages. The detailed

analysis of the access control model design requirements, policy specification criteria and

the review of current access control models and policy specification languages identified

the remaining access control challenges. These are listed as follows,

Increasing expressivity: Expressivity of access control models and policies can support

a wide range of access policies and thus the growing demands for access personal-

ization can be met.

Scalability of the mechanism: A security system needs to support a growing number

of users. This creates manageability and maintainability problems. The perfor-

mance of the system may degrade due to high load. Access control mechanisms

Approach: Access control models; Policy based access

Tuesday, June 8, 2010

State of the art

Access control
 ACL
 RBAC
 ABAC
 CWAC

Policy
 XACML
 KAOS
 Rei
 WSPL

20 CHAPTER 3. SERVICE ACCESS

Access

control

models

Generic Expressivity Varying

levels of

granular-

ity

Scalability High

level

specifi-

cation

of con-

straints

Ability

to dele-

gate

Ability to

revoke

ACL Yes No No No No No Yes
RBAC No Yes Yes No Yes Yes Yes
ABAC Yes Yes Yes No Yes No No
CWAC Yes Yes Yes No Yes No No

Table 3.1: Evaluating the access control models according to the requirements.

3.3 Policy based access
Nowadays access restrictions are increasingly achieved through policies. This section
introduces the basic definition of policy, presents the policy specification criteria and
reviews different policy specification languages.

3.3.1 Introduction to policy

A policy is broadly defined as a definite course of action to determine present and future
decisions. Applying policy is nowadays a prominent approach to protect security and
privacy of users, contents and services in distributed environment. Policy specifies,

• who is allowed to perform,

• which action,

• on which objects,

depending on

• requester’s attributes (e.g. roles, relations), and

• various contextual factors (e.g. time, location).

3.3.2 Policy specification criteria

It is important to document the policy specification criteria before evaluating policy lan-
guages. These are adapted from [91] and listed as follows,

Well-defined semantics: It means unambiguous description of concept model. With-
out well-defined semantics, the model cannot be manipulated, queried and inter-
preted reliably. Its absence severely restricts the practical usability of the model.
Formal description of policies should be generic irrespective of differences in imple-
mentation of policy languages. It should be easy to grasp and is expected to have
mathematically defined semantics.

The subjacent formalism of policy should be well-defined as well. The subjacent
formalism means how the semantics of concept model over which a policy is applied,

22 CHAPTER 3. SERVICE ACCESS

of criteria to determine the policy’s applicability to requests. Among all these languages,

Rei and KAoS extensively support constraints specification. Constraints can be set on

the attributes of subjects, objects and environment. EPAL, Ponder, XACML, WSPL,

Protune support execution of actions from within the policies. However, KAoS and Rei do

not support execution of action. Access rights can be delegated through policies specified

with Ponder, Rei, Protune. EPAL, WSPL, KAoS and XACML do not support delegation

of rights. Extensibility is supported in EPAL, Ponder, and Protune. XACML supports

extensibility by including provision for adding new data types. Basic ontologies of KAoS

and Rei can be extended for a given application. However, WSPL lacks the extensibility

feature. Table 3.2 shows the complete evaluation of the policy specification languages. In

this table, ‘++’, ‘+’, and ‘-’ indicate ‘strongly support’,‘support’, and ‘do not support’

respectively. This table will be revisited in chapter 4 to evaluate the proposed policy

specification language.

Policy Well-
defined

Monotonicity Expressiveness Execution Ability Extensibility

languages semantics of condition of action to delegate
EPAL + - + + - +
KAoS ++ + ++ - - +
Protune + + + + + +
Ponder - - + + + +
Rei + + ++ - + +
XACML - - + + - +
WSPL - - + + - -

Table 3.2: Evaluating policy specification languages according to the policy specification

criteria.

3.4 Remaining access control challenges
Existing access control models and policy specification languages are able to address many

of the requirements and criteria, such as high level specification of access constraints, vary-

ing levels of granularity in constraints. Nevertheless, the requirements to support growing

number of users, increasing privacy awareness of people, need for access personalization

through complex restrictions, and decentralized system architectures may call for the ex-

tension of existing access control models and policy specification languages. The detailed

analysis of the access control model design requirements, policy specification criteria and

the review of current access control models and policy specification languages identified

the remaining access control challenges. These are listed as follows,

Increasing expressivity: Expressivity of access control models and policies can support

a wide range of access policies and thus the growing demands for access personal-

ization can be met.

Scalability of the mechanism: A security system needs to support a growing number

of users. This creates manageability and maintainability problems. The perfor-

mance of the system may degrade due to high load. Access control mechanisms

Approach: Access control models; Policy based access

Tuesday, June 8, 2010

Summary
Semantic technologies can contribute to security and privacy

grant permission through reasoning

Introduced some practical use cases

Challenges remain

granularity vs complexity

real time reasoning and computation complexity

Tuesday, June 8, 2010

