Upstream Ontologies: Will We Ever Learn? Semantic Days. Stavanger, Norway, 31 May – 2 June 2010 Keynote address, Bertrand du Castel, Schlumberger Fellow

Wincent

automation

upstream

It's

all

about

Human-Centered Automation - Principles

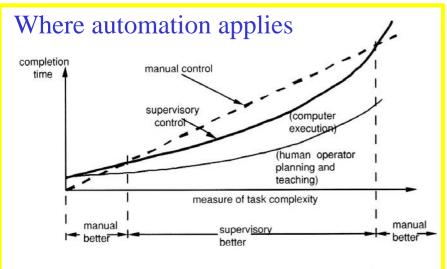
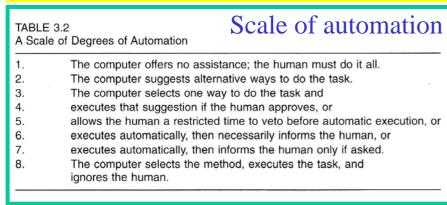
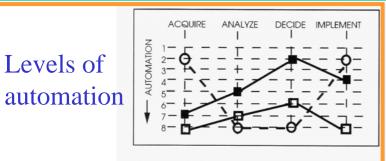




Figure 6.6 Range in which supervisory control outperforms manual control.

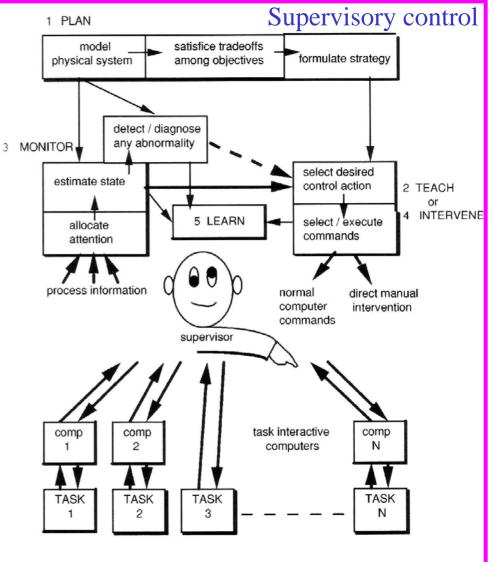


Figure 6.5 A composite picture of supervisory control.

Humans and Automation: System Design and Research IssuesThomas B. Sheridan, John Wiley, 2002Schlumberger

Upstream Human-Centered Automation

Value

Expertise is distributed around the world in and between companies. Expertise is enhanced by automation in data management, simulation, uncertainty management, prognostics. Experts make decisions, and are part of the automation continuous improvement process. Administration is seamless with logistics automated through web services.

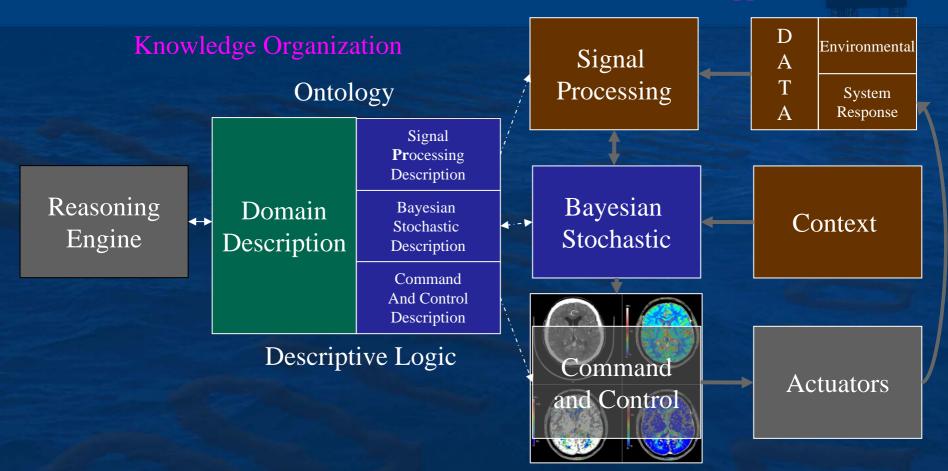
Field locations have the benefits of local autonomy with logistics and resources optimized across the company. Local staff have access to expertise through automated systems, particularly in case of break down. Work schedules are attractive because of the elasticity of response created by automation and access to multiple remote experts.

Multi-vendor asset equipment is fully networked from down-hole to seabed to surface. Information about the performance of the asset, and the levels of uncertainty in future performance, is constantly updated. Automation plays a key role in a rolling simulation, uncertainty analysis, and optimization of asset exploitation.

Surface systems are networked and can be controlled remotely. Automation drives efficiency, safety, and economics. The surface environment is safe and attractive. Dangerous, unpleasant and inefficient tasks, and tasks prone to human error are automated. Well trained technicians operate surface equipment with input from remote experts.

Down-hole information and control is available through higher bandwidth communication channels throughout well construction, completion, and production. Installation of completion hardware is predictable and reliable. Flexible, semi autonomous, bandwidth optimized, and context aware systems reduce the need for intervention.

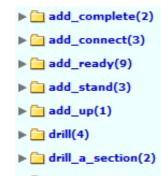
Artificial Intelligence is a Means to Automation Schlumberger


Upstream Automation

Measurement and Control, Processes and Technology, Maximizing the *Value of People Expertise*

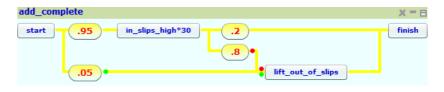
Cycle Risk	Distribution Optimization	Discovery Production	Tagging Tripping	Exceptions Tractor	•	Remote operation Auto-pilot High-level commands Low-level commands Manual operation
Finance	Asset	Reservoir	Well	Zone		
Governance Standard Decision	Resolution Federation Uncertainty	Ontology Architecture Model	Evaluation Learning Simulation	Inversion Web Services		There is much to human beings, of which little has been decoded. Artificial intelligence is
		remote, but leveraging what's known is within reach.				
	L					
égalité rhythm dominance rhetoric	religious inversion ecstasy poetry	mythic blending intelligence language fashion	mimetic metaphor habits symbol	sensori-motor action instinct sign naked		
uniform manufacturing lending logic policy	vestment art money reduction trust	gold description narrative	clothing tool bulla number sentence	object shell digit word		Schlumberger

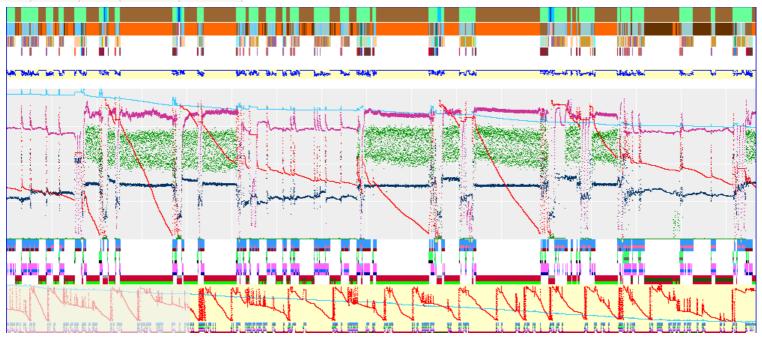
Upstream Human-Centered Automation


Real-time Applications

The ontology describes sensor fusion and control activities in a uniform manner so that reasoning can automatically process data input into commands. Schlumberger

Stochastic Grammars


Comment	Input 🔺	absent	block	bottom	classified
Rotary Drill	0	no	slow	onbottom	yes
Slide Drill	1	no	slow	onbottom	yes
InSlips	2	no		offbottom	yes
Ream	3	no	down	offbottom	yes
Run In, Pump	4	no	down	offbottom	yes
Run in, Rotate	5	no	down	offbottom	yes
Run In	6	no	down	offbottom	yes
Back Ream	7	no	up	offbottom	yes
Pull Up, Pump	8	no	up	offbottom	yes
Pull Up, Rotate	9	no	up	offbottom	yes



drill_well(1)

© Schlumberger, 2009 All Rights Reserved. Patents pending.

An ontology of rules

DL ontologies are monotonic

CNS area	Presynaptic	Postsynaptic	N	p,	Methods			
Cat spinal cord	Group 1a axons	Motor neurons	2-5 (REFS 22,24,146)	P, 0-1 (CB)	R ^{21,22,24} , LM ^{22,146} .			
Catspinatcord	Group ta axons	Motor neurons	2-3 (REF3 22,24,140)	(REFS 21,22,24)	QA ^{21,22,24}			
Cat spinal cord	Group 1a and 1b axons	DSCT neurons	1-18 (REF. 3)	0.07-1 (CB) (REF. 23) 0.06-0.85 (CB) (REF. 3)	R ^{3,23} , LM ³ , QA ^{3,23}			
Frog spinal cord	Primary afferent fibres	Motor neurons	21–72	0.15-0.69	R, LM, QA ¹⁴⁷			
Goldfish brainstem	Interneurons	Mauthner cells	3-28 (REFS 4,5)	0.17-0.62 (REFS 4,5)	PR ⁴⁵ , LM ⁴⁵ , EM ⁴⁵ , QA ⁴⁵			
Cat and rat L2/3	Pyramidal cells	Interneurons	1-7 (REF. 15)	0-0.84 (CB) (REF. 15) 0.13-0.64 (REF. 49)	PR ^{15,49} , LM ¹⁵ , EM ¹⁵ , QA ¹⁵ , Cal ⁴⁹			
Cat L2/3	Interneurons	Pyramidal and spiny stellate cells	3-17 (REF. 10)	ND	PR, LM, EM10			
Cat and rat L2/3	Pyramidal cells	Pyramidal cells	3.9±0.8 (REF. 148) 2–4 (REF. 8) 7.6±4.7 (REF. 149)	0.5±0.05 (REF. 148) 0.46±0.26 (REF. 49) 0.65±0.18 (REF. 149)	PR ^{25,35,42,148} , LM ⁸ , QA ^{148,149} , Cal ⁴⁹			
Rat L2/3	L4 spiny cells	Pyramidal cells	4-5 (REF. 150) 4-6 (REF. 151)	0.79±0.04 (REF. 151)	PR ^{150,151} , LM ^{150,151} , EM ¹⁵¹ , QA ¹⁵¹			
Cat and rat L4	L4 pyramidal and spiny stellate cells	L4 pyramidal and spiny stellate cells	2-5 (REF. 152) 8±4.2 (REF. 149)	0.69-0.98 (REF. 153) 0.86±1.09 (REF. 149)	PR ¹⁵² , R ¹⁵³ , LM ^{22,153} , QA ¹⁵³			
Rat L5/6	Pyramidal cells	Pyramidal cells	2-8 (REF. 7) 4-8 (REF. 138) 8.1±4.2 (REF. 149)	0.16-0.9 (REF. 138) 0.53±0.22 (REF. 149)	PR ^{7,138,149} , LM ^{7,138} , EM ¹³⁸ , QA ^{138,149}			
Rat L5/6	Interneurons	Pyramidal cells	1-5 (REF. 154)	ND	PR, LM, EM154			
Rat L5/6	Pyramidal cells	Interneurons	6-12 (REF. 155)	<0.1 (REF. 155)	PR, LM, EM155			
Rat CA1	Interneurons	Pyramidal cells	6-12 (REF. 9)	ND	PR, LM, EM ⁹			
Rat CA1	Pyramidal cells	Pyramidal cells	2 (REF. 156)	ND	PR, LM, EM156			
Rat CA1	Stratumradiatum	Pyramidal cells	3-18 (REF. 157)	0.14-0.81 (REF. 157) 0.06-0.37 (REF. 26)	R ^{26,157} QA ¹⁵⁷ , MK ²⁶			
Rat CA3	Interneurons	Pyramidal cells	2-13 (REF. 158)	ND	PR, LM, EM, QA ¹⁵⁸			
Guinea pig CA3	Pyramidal cells	Interneurons	1-3 (REF. 159)	0.75±0.19 (REF. 159)	PR, LM, EM, QA159			
Rat hippocampal cultures	Excitatory cells	(Autapse)	ND	0.09-0.54 (REF. 27) 0.05-0.9 (REF. 28)	R ^{27,28} MK ²⁷ FM ²⁸			
Rat hippocampal cultures	Excitatory cells	Excitatory and inhibitory cells	3-19 (REF. 14)	0.03-0.9 (REF. 14)	PR, FM, EM, QA14			
Rat cerebellum	Climbing fibres	Purkinje cells	510±50 (REF. 25) 221-392 (REF. 11)	0.9±0.03 (REF. 25)	R ²⁵ , QA ²⁵ , LM ¹¹ , EM ¹¹			
Rat cerebellum	Parallelfibres	Purkinje cells	1-2 (REF. 6)	0.05 (REF. 160)	R ¹⁶⁰ , M ¹⁶⁰ , LM ⁶ , EM ⁶			
Rat cerebellum	Interneurons	Stellate and basket cells	ND	0.1-0.54 (REF. 161)	R, MS ¹⁶¹			
Striatum	L4/5 afferents	Medium spiny neurons	ND	0.42 (REF. 162)	R, QA ¹⁶²			
Rat auditory brainstem	Calyx of Held	Principal cells in MNTB	637±113 (REF. 13)	0.25-0.4 (REF. 13)	PR, QA13163164			
Striatum	Thalamic afferents	Medium spiny neurons	ND	0.72 (REF. 162)	R, QA ¹⁶²			
Olfactory bulb	Olfactory receptor neurons	Principal mitral and tufted cells and periglomerular interneurons	ND	0.92±0.03 (REF. 6)	R, QA ⁶			
Olfactory bulb	Interneurons	Juxtaglomerular cell	ND	0.21-0.32 (REF. 165)	R, MS ¹⁶⁵			
Summary of the number of release sites and p, for some connections in the CNS, illustrating the diversity of these parameters across different connections. CA1,								

Table 1 | Summary of number of contacts and release probability (p.) in different connections

The brain is stochastic and learns

Summary of the number of release sites and p, for some connections in the CNS, illustrating the diversity of these parameters across different connections. CA1, hippocampal area CA1; CA3, hippocampal area CA3; Ca1, Ca* imaging; CB, compound binomial; DSCT, dorsal spinocerebellar tract; EM, electron microscopy; FM, FM-dye based method; L, layer; LM, light microscopy; M, modelling; MK, MK-801 method; MNTB, medial nucleus of the trapezoid body; MS, minimal stimulation; N, number of contacts; ND, not determined (no absolute value was estimated); FR, paired electrophysiological recording; QA, quantal analysis; R, electrophysiological recording.

Upstream Ontologies: Will We Ever Learn? Semantic Days. Stavanger, Norway, 31 May – 2 June 2010 Keynote address, Bertrand du Castel, Schlumberger Fellow

Schlumberger _a