

EqHub Stage 2 Mapping

Magne Valen-Sendstad Q2 2010

1. Define Object In Focus

Document & Other Identifiers References

2 "Installation and removal procedures"

MANAGING RISK

DINV

3 "Measurement and arrangement drawing"

MANAGING RISK

DNV

4 "Operation and maintenance instructions"

5 "Product description and ordering information" MANAGING RISK

6 "Sectional drawing"

© Det Norske Veritas AS. All rights reserved

28. "Approval authority"

33 "EX certificate number"

32 "CE marking"

Product

7 "Actuator service"

8 "Fail action"

9 "Manual override"

10 "Shut-off mechanism"

11 "Supply pressure range"

12 "Thrust range"

13 "Torque range"

16 "Frequency band designation"

14.06.2010

17 "High pressure side connection design" MANAGING RISK

18 "Low pressure side connection design"

MANAGING RISK

19 "Process Connection"

20 "Signal connection"

21 "Supply Connection"

21 "Supply Connection" SUPERSEEDED

25 "Body material"

26 c "Enclosure material" (THERMOSTATIC SWITCH / THERMOSTAT)

27 "Gauge mounting"

29, 30, 31, 34, 35, 36, 86 Pattern for interface relating engineering domain codes for classes.

37 "Conductivity sensor" (Transmitter, Level, Conductivity)

38 "Diaphragm seals"

17 December 2010

Slide 37

39 "Element arrangement" (ELECTRICAL TEMPERATURE TRANSMITTER)

17 December 2010

42 a "Filling fluid", Pressure transmitters

© Det Norske Veritas AS. All rights reserved

16.06.2010

© Det Norske Veritas AS. All rights reserved

42 C "Filling fluid", Diaphragm seal

Slide 41

43 "Measuring method"

44 "Accuracy class"

© Det Norske Veritas AS. All rights reserved

17 December 2010

Slide 44

46 "Dial diameter"

48 "Filling fluid in Case"

15-24.06.2010

52 "Measuring principle"

54 "Insertion length"

58 "Window type"

17 December 2010

59 "Action when activating"

15-22.06.2010

60 "Adjustable temperature range"

61 "Circuit description"

62 "Proximity measuring method"

15-22.06.2010

18.06.2010

63 "Regulating method"

© Det Norske Veritas AS. All rights reserved

Slide 54

64 Sensing element material (ELECTRICAL PRESSURE TRANSMITTER, ELECTRICAL DIFFERENTIAL PRESSURE TRANSMITTER, PRESSURE GAUGE, DIFFERENTIAL PRESSURE GAUGE)

MANAGING RISK

DNV

64 "Sensing element material" (PROXIMITY SWITCH)

65 "Sensing range"

67 "Adjustable level range"

77 "Output Signal"

17 December 2010

79 "Protective coating"

81 "Directional valve type"

16-22.06.2010

85 "Gasket material"

87 "Non process cover material"

88 "Normal position"

28.06.2010

class whose members are intended to be 'open by design' and that something that can take any position is put in an 'open' position.

92 "Return pilot"

93 "Seat material"

97 "Bonnet material"

99 "Capillary tube filling fluid"

16.06.2010

MANAGING RISK DNV

101 "Diaphragm material"

102 "Flange material"

103 "Flushing ring material"

DNV
109 "Manufacturer reference standard"

110 "Multi-hole"

104 "Immersion pipe outlet"

111 "Nominal diameter"

114 "Plate material"

117 "Process connection material", Temperature element

© Det Norske Veritas AS. All rights reserved

118 "RTD type"

119 "Sheath material", Temperature element

119a "Sheath material", Optional extension for Thermocouple

119b "Sheath material", Optional extension for Resistance temperature element????

124 "Stem material

125 "Temperature element design standard"

IEC 584-2 for thermocouple classes only?

Slide 84

128 "Temperature element wire configuration"

129 "Temperature scale configuration"

130 "Thermocouple type"

19-21.06.2010

17 December 2010

131 "Thermometer accuracy class"

132 "Thermometer connection form"

133 "Thermometer form"

http://www.wisnercontrols.com/pdfs/Taylor%20thermometer%20specs%20pdf.pdf

137 "Thermowell construction"

138 "Thermowell shank construction"

NOTES

ATEX Group and Category

LEVEL OF PROTECTION	CATEGORY GROUP I GROUP II		PERFORMANCE OF PROTECTION	CONDITIONS OF OPERATION*
Very High	M 1		Two independent means of protection or safe even when two faults occur independently of each other.	Equipment remains energised and functioning when explosive atmosphere present
Very High		1	Two independent means of protection or safe even when two faults occur independently of each other.	Equipment remains energised and functioning in Zones 0,1,2 (G) and/or 20, 21, 22 (D)
High	M 2		Suitable for normal operation and severe operating conditions. If applicable also suitable for frequently occurring disturbances or for faults which are normally taken into account.	Equipment de-energised when explosive atmosphere is recognised
High		2	Suitable for normal operation and frequently occurring disturbances or equipment where faults are normally taken into account.	Equipment remains energised and functioning in Zones 1, 2 (G) and/or 21, 22 (D)
Normal		3	Suitable for normal operation.	Equipment remains energised and functioning in Zone 2 (G) and/or 22 (D)

Source: atexguidelines_may2007.pdf

© Det Norske Veritas AS. All rights reserved

PolyPak™ is a registered trademark of the Parker Hannifin Corporation's Seal Group.

Explosive Atmospheres

ISO 15926-4 REPRESENTATION FORM CLASS

ISO 15926-4 CLASS OF IDENTIFICATION

This need further consideration. All we actually know is that the string is a MANUFACTURERS IDENTIFICATION CODE, we do not know the basis for the format, is it as defined by Emerson Process Management, or is it a SHAREcat format. The answer to these questions will give rise to more precise mapping. (Use of subclasses)

© Det Norske Veritas AS. All rights reserved

Template Signature Instances

© Det Norske Veritas AS. All rights reserved

17 December 2010

Measuring, calibrated, accuracy range and accuracy

Containment

17 December 2010

Jan's migration of point values from Snapshot E MANAGING RISK

Jan's migration of point values from Snapshot E MANAGING RISK

Count

MANAGING RISK DNV

Inconsistency Part 2/Part 3 on integer and real

Inconsistency between Jan's migration to RDS and Part 7, e.g. Figure 2 – Relation: Permitted Ambient Temperature

www.dnv.com