

Collaborations To Achieve Open Standards-based Interoperability for Critical Infrastructure Management

Alan T. Johnston
MIMOSA President
OpenO&M Initiative Chair

October 13, 2011 1

a critical paradigm shift

- A new industry solutions business model where systems of systems interoperate based on open, supplier neutral standards
 - Shared, supplier neutral industry information models
 - Shared, supplier neutral industry utility services (SOA-2) driven by industry use cases, with the ability to be validated by 3rd parties
- Shared industry information models, all required industry and enterprise information (including all required O&M information) and shared industry utility services **delivered as part of the EPC process.**
- Cloud technology-based environment(s) for all required O&M and Lifecycle management services enabled by open standards based interoperability.
- Use Case-Driven Methodology
- Owner/Operator Leadership and Governance

current situation

lab

marketing

accounting

reliability

good enough in the past

trading

control

maintenance

Supply & distribution

management

new collaborative work process

planners

management

outside operator

board operator

field workers

maintenance

auditable

event-driven

October 13, 2011

sample work process - tank line up

modeling is more than data

The OpenO&M™ Initiative

Brings People Processes and Systems Together

Enterprise Business Systems

Enterprise Resource Planning (ERP), Enterprise Risk Management

Operations

Maintenance

Physical Asset Control Real-time Systems

an implementation standard

OpenO&M harmonizes the standards

non-proprietary interoperability

strategic fit

transf

BUSINESS PROCESS / SERVICES EXECUTION ARCHITECTURE

Run-time Services

Composition Services Business Services Application Services

Build Tools

Workflow Execution

Business Process Model

Roles Responsibilities

Task Mgmnt

Interaction (collaboration)

Governance Services

Orchestration
Supervisor: Broker, etc.
SLA Mgmnt. Services

'Bind' Services

Open Operation and Maintenance Utility Services and ISBM* *Information Service Bus Model

Data Model

External Model Map MetaData NameServices

Persistence

Intelligent Cacheing Data Store Data Warehouse

Event Detection Subsystem: real-time detect, correlate, publish/subscribe, forwarding, etc.

Messaging Subsystem: routing (content, rules, etc.), queueing, transformation, synch/asynch, etc.

OpenO&M

transfer

2

1

asset excellence – current story

October 13, 2011 11

to be state for asset excellence

October 13, 2011 12

physical asset resource management systems

- 1. "handover" as-designed/built information from engineering, procurement, construction phase to O&M phase
- 2. recurring updates send engineering upgrades to O&M systems
- 3. field engineering changes sent to engineering (bottom up)
- 4. on-line product data library updated with engineering reference information (asset based data)
- 5. operations & maintenance configuration changes (e.g. remove/replace transmitter)
- 6. preventive maintenance (PM) triggering
- 7. condition-based maintenance (CBM) triggering
- 8. early warning notification
- 9. incident management actual & near-miss information captured and escalated along the lines of accountability

10. O&M systems information provisioning

October 13, 2011 13

scenarios mapped to systems

October 13, 2011

14

Context for Collaboration

The <u>Safe Technology Roadmap™</u> for Interoperability

Context for Collaboration

The <u>Safe Technology Roadmap™</u> for Interoperability

The New 'Black Gold' Alberta Oil Sands – A Vast Resource

Fort McMurray

Alberta area oil sands & heavy oil deposits contain ~2.5 Trillion barrels of world's known petroleum reserves

Alberta deposits cover 77,000 sq km (~30,000 sq mi)

Athabasca Deposit
> 42,000 sq km
890 Billion barrels in place
20% within 250 ft. of surface
30 Bb Mineable; 142 Bb In-Situ

Proven Reserves

Source: BP Statistical Review of World Energy 2008

Oil Sands, The Resource

Bitumen - Easy to Find, Tough to Get Out!!

- Thick, sticky mixture of
 - Sand,
 - Clay,
 - Water,
 - Bitumen: 8-9°API

^{*}Suncor data includes proved plus probable reserves and confingent resources, as of December 31, 2006 which is not comparable to most competitions.

Oil Sands: Mining

Oil Sands: In-situ

All Bitumen Needs Upgrading

Inputs

Bitumen

Hydrogen (+ Heat) (+ Pressure)

Outputs

OR

Fuels

Historical Process - Coking - Bitumen to Fuels

The Future: Bitumen to Fuels with CCS

One step conversion to fuels with gasification and CCS - Benefits for All Canadians

Next Steps ...

- ☐ Alberta's Bitumen Royalty In Kind (BRIK) programme
 - secure source of feedstock
 - APPROVED Feb.16, 2011
 - CNRL 50% Partner = North West Redwater Partnership (NWR)
- ☐ Financing
- ☐ Project Sanction November 2011
- ☐ Implement a true Sensor-to-Boardroom Industry Standard Integrated/Interoperable system
 - √ via the Integrated Information Core (IIC)
- ☐ Begin Construction Spring 2012 (Early Works Fall 2011)
- ☐ Plant Start-Up by Fall 2014 (Spring 2015?)

The first Upgrader/Refinery in the world With Integrated CO₂ Management

NIMS Interoperability Project

- Core Objective Establish a system of systems O&M interoperability environment for NWR that:
 - Is supplier neutral
 - Is sustainable because suppliers build and support the required standards-based adaptors as licensed products
 - Uses specified standards (OpenO&M, MIMOSA, ISO 15926) supported by industry (owner/operators and suppliers) in a normative fashion
- Leverages an industry "Foundation Architecture"
 - Common industry information model
 - Common services defined by the OpenO&M Use Cases
- Engineering system remains system of record for engineering for full-project lifecycle
 - A skeletal extract is required to bootstrap and provision O&M systems
 - Post Handover, Operations and Maintenance departments will make changes to the as operated and maintained information that will need to be captured and synchronized with the engineering system of record

Current Industry Practices

- □ O&M Environment Is **NOT Interoperable**
- Manual "handover" from EPC to O&M
- O&M systems are manually integrated
- O&M systems are manually provisioned with common core data required for Start-up

NIMS Project Practices

- ☐ O&M Environment Is Interoperable
- ☐ Fully leverages OpenO&M Use Cases
- O&M systems Interoperate for defined Use Cases
- ☐ Digital "handover" from EPC to O&M
- O&M systems are <u>automatically provisioned</u> with common core data required for start-up

DeBetanizar Fractionator
FlowSheet (PFD) [32LIC 0017

'Real-World' Demonstration

Smarter Oil and Gas Industry Value Proposition

IBM

Digital Plant 2011 Public Demo Supporting OpenO&M Use Case 1 and 10

© 2011 IBM Corporation

NWR Future Phases Logical Architecture

ISO TC184 Manufacturing Asset Management Integration Task Force Total Asset Life-Cycle Summary

ISO TC184

Oil and Gas asset management operations and maintenance Interoperability (OGI) Technical Specification Proposal

Nils Sandsmark and Alan T. Johnston Co-Chairs

> ISO TC 184 Plenary May 4, 2010 Rosslyn, VA ISO TC184

Context for Collaboration

ISO TC 184

Task Force Result Global Collaboration

- MIMOSA/OpenO&M
- FIATECH
- POSC Caesar
- Center for Integrated Engineering Asset Management (CIEAM)

On March 15, 2011 we received the officially notification from the Japanese National Committee that they will become the 5th country officially participating in this project. This guarantees the project will proceed to produce the official ISO Oil and Gas interoperability solution.

ISO TC 184

- The shift from project-centric custom integration to productized standards-based interoperability is critical for sustainment of ever more complex systems in a system of systems model
- No single standards provides the required coverage
- The portfolio of standards including ISO 15926 and those related to the OpenO&M Initiative provide the core coverage that is required.
- Real owner/operator projects are starting to move forward in the Oil and Gas industry based on this approach.
- The ISO TC184 Oil and Gas Interoperability project will codify the collaborative approach in a Technical Specification

October 13, 2011 37