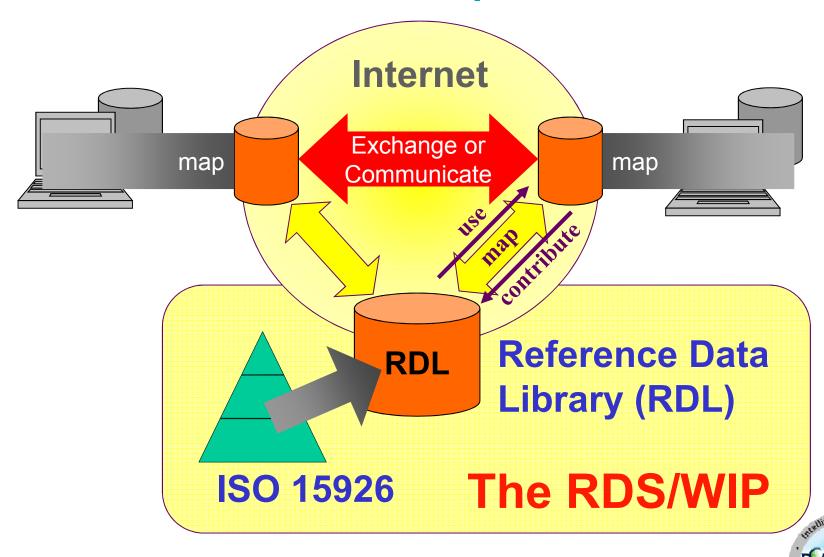


The Value of Reference Data & The Joint Operational Reference Data Project

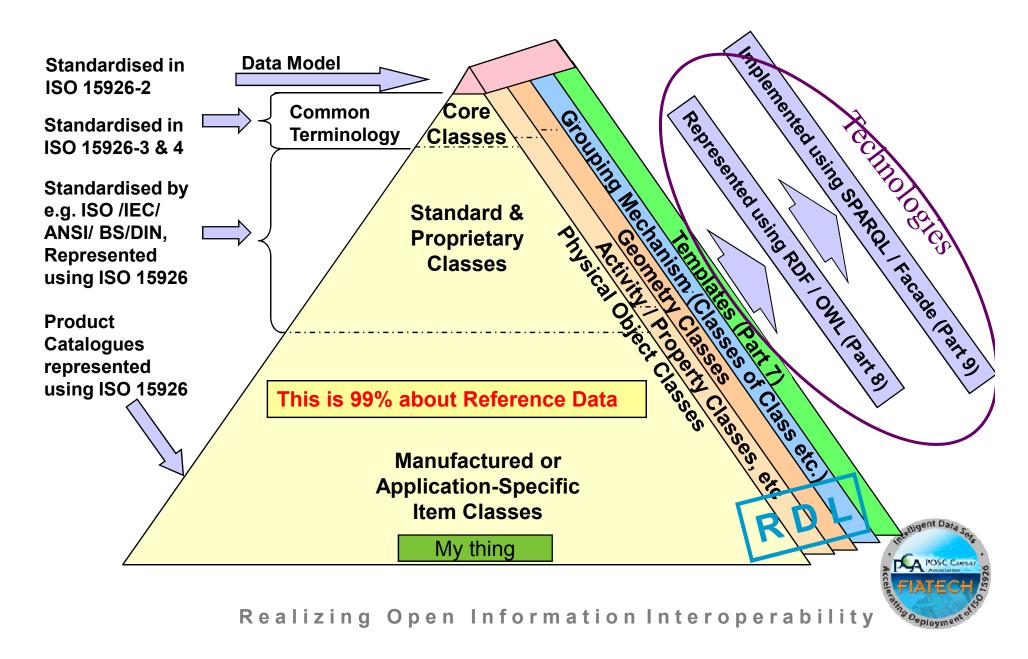
PCA Members Meeting Houston, March 4th, 2010

Ian Glendinning
Information Risk Management
Det Norsk Veritas, Oslo, Norway
ian.glendinning@dnv.com

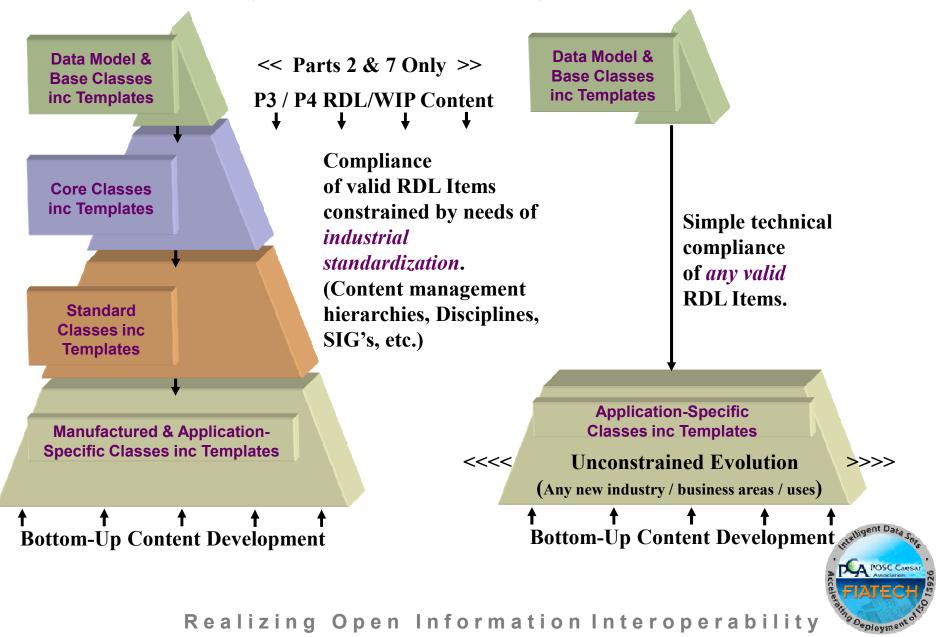


Members Meeting Ref Data Agenda

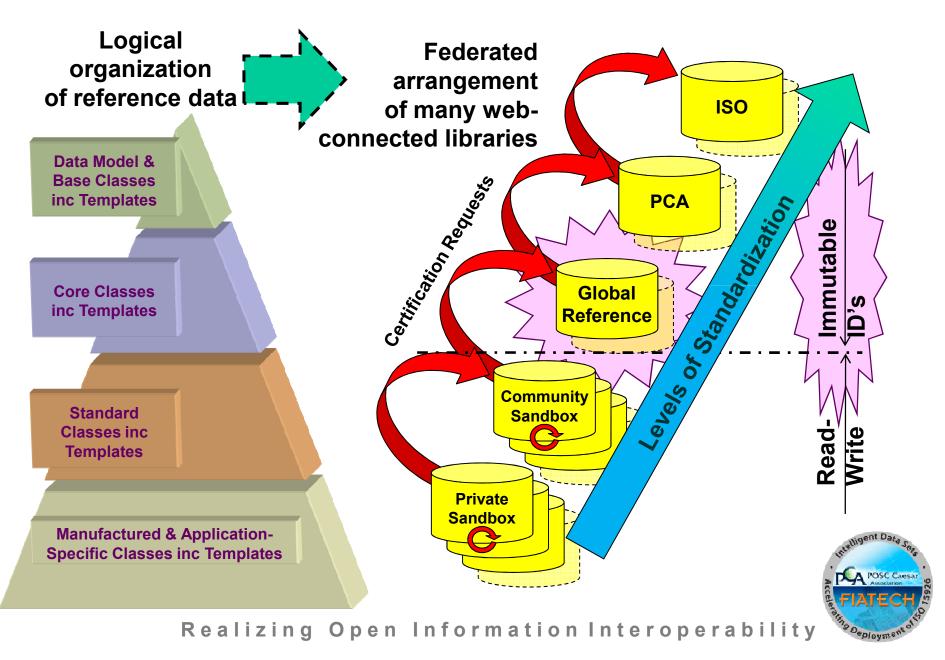
- The Value of Reference Data (20 mins)
- The Joint Operational Reference Data Project (20 mins)

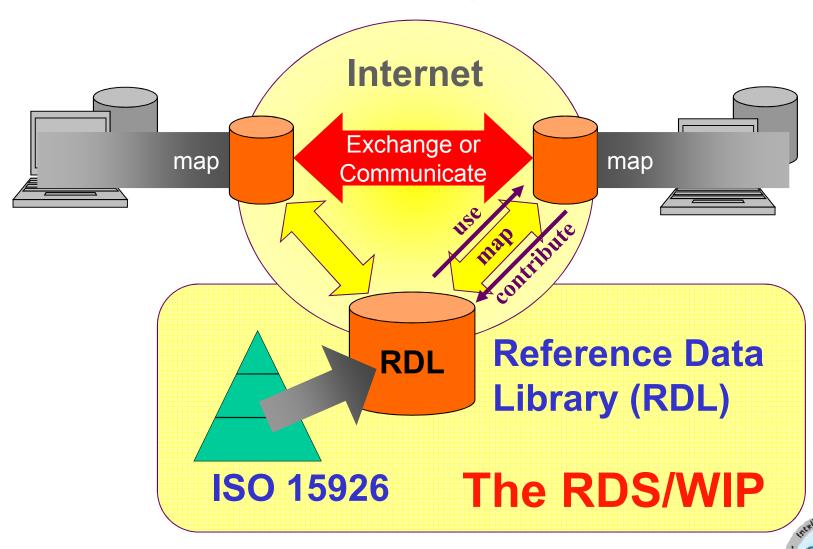


ISO 15926: At its simplest

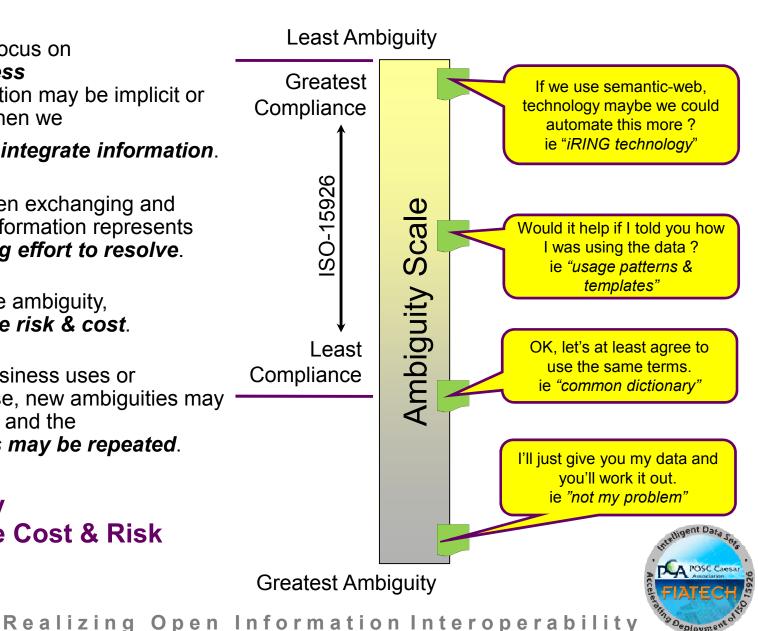


Realizing Open Information Interoperability


ISO 15926 - Reference Data Architecture


Industrial (& non-Industrial) Use

Standardization & Federation of Reference Data


ISO 15926: At its simplest

Realizing Open Information Interoperability

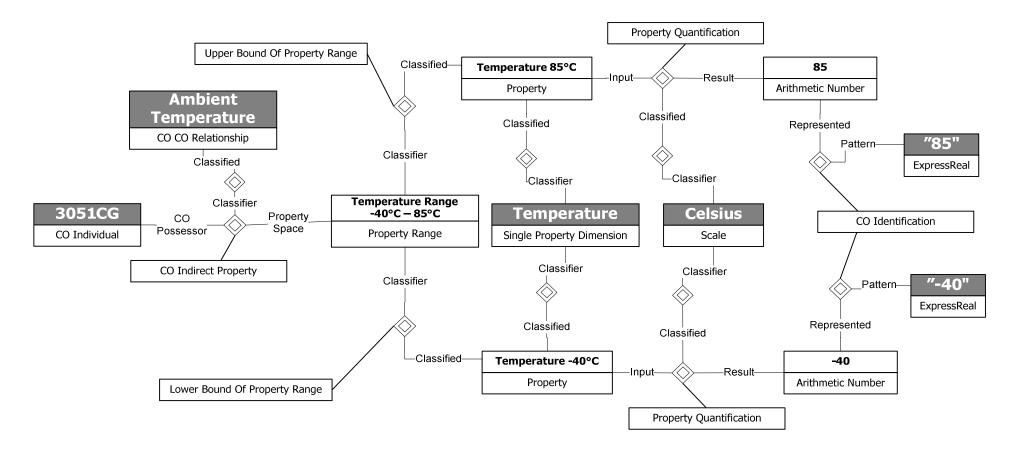
Interoperabilty as reducing ambiguity

- Because we focus on doing business much information may be implicit or ambiguous when we exchange or integrate information.
- Ambiguity when exchanging and intergrating information represents risk, requiring effort to resolve.
- The higher the ambiguity, the higher the risk & cost.
- When new business uses or interfaces arise, new ambiguities may be significant, and the costs & risks may be repeated.
- **Ambiguity** = Lifecycle Cost & Risk

Interoperability, a major business issue.

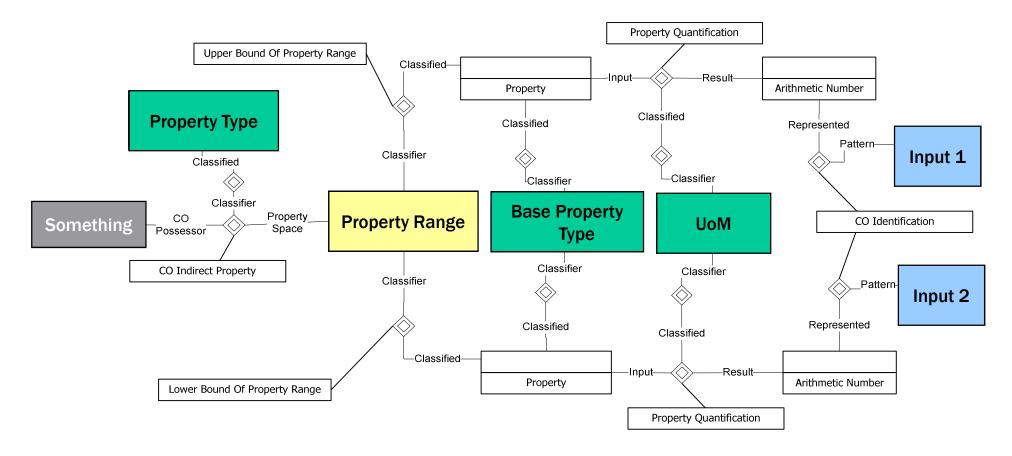
- In the US capital facilities industry in 2002 alone, NIST estimated the annual cost of poor interoperability the cost of finding and verifying (& the cost & risk of *not* finding) correct information for operational decision support at *USD15.8 billion* over and above wider health, safety and environmental risks.
- The McGraw Hill ENR Technology for Construction 2007 report on interoperability estimates the cost to be twice as much as the 2002 NIST report.
- According to a 2008 Gartner report "Legacy data issues (accessing and maintaining data in old systems and formats) are unarguably the biggest problem facing the process industries".
- Repeated estimates since the mid-90's had already suggested that individual asset projects spend multi-million-USD's simply handing over information into the operations phase, and that inadequate interoperability as a whole accounts for 1% to 2% of capital costs.

ISO 15926 - The Whole Standard

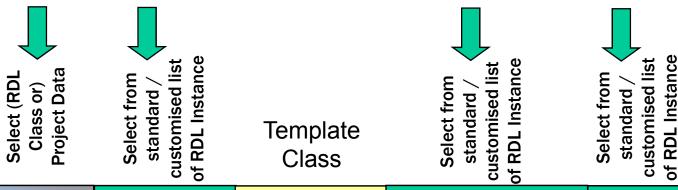

- ISO 15926
 Integration of life-cycle data for process plants including oil and gas production facilities.
 - ISO 15926 1 Overview and fundamentals (Approved IS June 2004)
 - **ISO 15926 2 Data model** (Approved IS December 2003)
 - ISO 15926 3 Geometry (Approved TS April 2009)
 (ISO 10303 42 Represented in RDS/WIP according to Parts 2 & 4)
 - ISO 15926 4 Initial reference data. (Approved TS October 2007) (RDL included in the RDS/WIP and extended from there according to Parts 5 & 6)
 - ISO 15926 5 RDL Maintenance Procedures (Superseded by ISO-TC184/SC4 RDL Database procedure with 15926-specific annex issued for ballot January 2010)
 - ISO 15926 6 Scope and methodology for developing additional reference data (NWI/CD submitted to ISO Q3 2007, planned complete in 2010)
 - ISO 15926 7 Template Implementation Methodology (Final TS submission December 2009)
 - ISO 15926 8 OWL/RDF (W3C) Representation (TS submission December 2009)
 - ISO 15926 9 Façade (Web Interface) Implementation (TS planned complete 2010)
 - ISO 15926 10 Abstract Test Methods (in progress)
 - ISO 15926 (NWI-11) Simplified Industrial Usage
 (New ISO work item under development, based on existing industrial usage and compliance guidelines.)

A range on the data sheet

SHARECAT &	Datasheet Transmitter, Pressure, Electric			
Document Number Plant/Platform Tag number SerialNo SetPoint Low SetPoint Hight P & ID Line/Equipment no. Service description	28-1A-KOG-I54-27500-0012 Test Installation 2 PT -42-0304 N/A 10 barG 71 barG 28-1A-KOG-C78-00275-0002 XX-42-0002 SCALE INHIBITOR. PUMP OU	Revision Process Datash. No. System Range From Range To Range Unit Area PO: JTLET	: 1 : N/A : N/A : 0 : 110 : barG : N/A : TI2-M022-ME-01	
	0018117 SON PROCESS MA	Accepted Accepted will Not accepte	th comments incorporated d. revise and resubmit	
Type 30510	G ATFX	category		: 1
Type 30510 Manuf. Partno. Class Trans rea Explosion protection	G G-5-A-2-2-A-1-K-B4 mitter, Pressure, El	category explosive at	mosphere	: 1 : G
Type 30510 Manuf. Partno. Class Trans	ATEX mitter, Pressure, E EEx ia		mosphere	: 1 : G
Type 30510 Manuf. Partno. Class Trans rea Explosion protection Gas-group Temperature class Approval authority Certificate IP-Class ATEX group ATEX category ATEX explosive atmosphere	GG-5-A-2-2-A-1-K-B4 MTEX mitter, Pressure, E EEx ia IIC IT5 BASEEFA BAS 97ATEX108() IP66 III IT 1	explosive at	Veight	: 1 : G
Type 30510 Manuf. Partno. Class Trans rea Explosion protection Gas-group Temperature class Approval authority Certificate IP-Class ATEX group ATEX category	GG-5-A-2-2-A-1-K-B4 ATEX mitter, Pressure, E EEx ia IIC IT5 BASSEFA BAS 97ATEX108() IP66 II	explosive at	•	: 1 : G


Model: Ambient Temperature Range

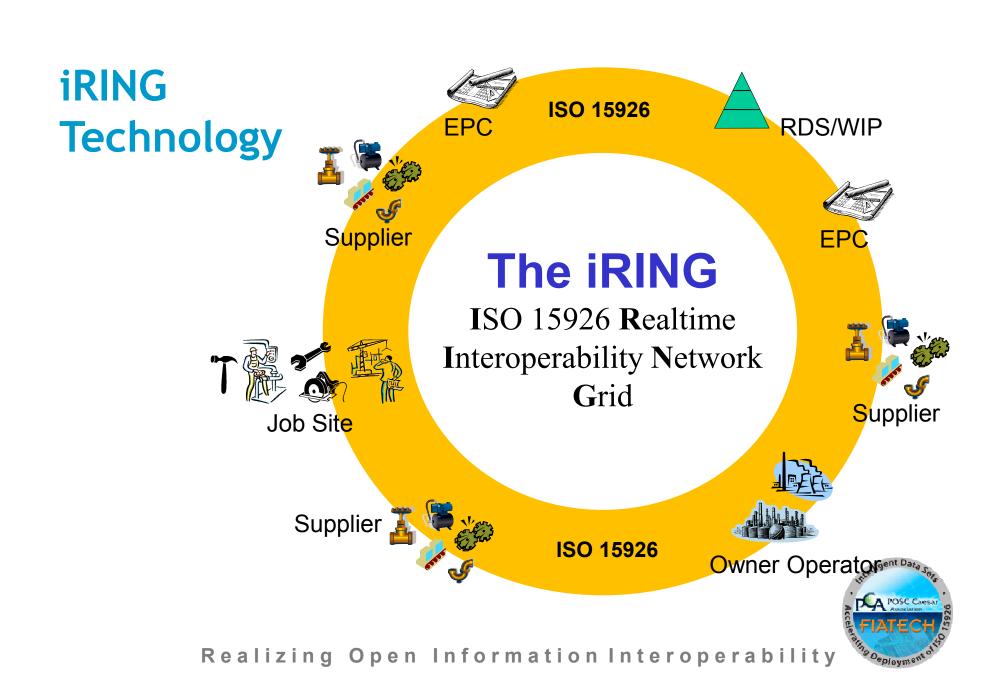
3051CG ambient temperature: $-40^{\circ}C - 85^{\circ}C$


ISO 15926 Property Range Template

'Something' has 'Property Type' with 'Property Range' of 'Base Property Type' defined by 'Input 1' and 'Input 2' with 'UoM'

Template Signature Mapping Interface / Wizard

Inst. #		. , ,	Base Property Type	UoM	Input 1	Input 2
#nnn 305	 Ambient Temperature	(Created by the system)	Temperature	С	-40	85


A "Mapping Guide" already exists, to select templates and populate their signature ... Without ever seeing Part 2 (or even Part 7). This is being upgraded to support an initial *core* set of Templates in the RDL.

And note that the method can apply to any data representation.

The Power of Templates

- They provide a flexible and precise tool for ontology building for any arbitrary source information definition.
- They make practical the creation of rich semantic structures.
- They standardize modeling by standardizing templates and their selection rules.
- With good templates and mapping guide, it's easy to speak the language of the ontology from a business modelling perspective.
- The signature is all the business domain expert and end user need to know.
- Signatures and rules have technology-independent definitions.
- Their rigorous defintion enables automated validation.
- Templates hide complexity and guarantee correctness

The Significance of iRING

iRING User Group & iRING Tools (P8 OWL/RDF & P9 Facades) Technology *focus*, but with content in iRING Sandbox.

Important because ISO15926 needs P8 & P9 for fully automated semantic interoperability, and ...

Because there is an iteration between content & technologies in the evolution of both

- Content is technology independent, BUT creating, managing, mapping and using existing and new content is easier as better tools become available.
- Better tools will be developed IF developers can work with better content needed for business use and standard RDL management.

Members Meeting Ref Data Agenda

- The Value of Reference Data (20 mins)
- The Joint Operational Reference Data Project (20 mins)

Latest News Release:

PCA & FIATECH Announce Joint Operational Reference Data

FOR IMMEDIATE RELEASE

Austin, TX and Oslo, Norway, February 24, 2010

POSC Caesar Association (PCA) and FIATECH have agreed on a single "Joint Operational Reference Data" project plan to create in 2010 a stable, scalable and commercially-viable operation of the ISO15926 reference data system and associated services

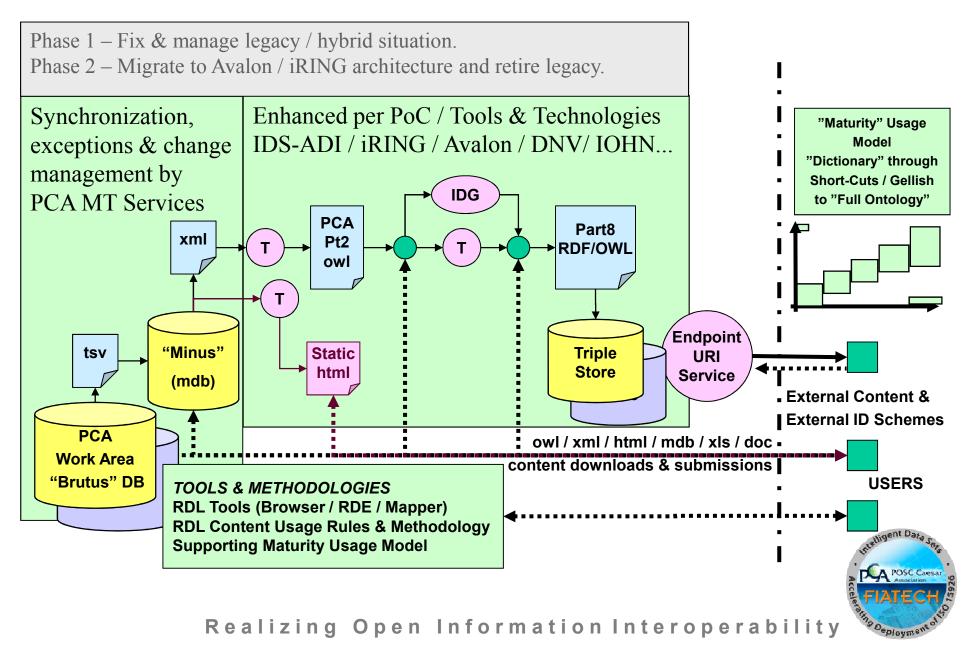
Boards of both member organizations have already agreed funding for the front-end phase to start in March, with a governance board and project manager already in place.

.... more ...

History of Joint Operational RD Plan

- Avalon Challenge to PCA (Spring 09) In fact, many of the plan components arose from IDS-ADI collaboration and related project initiatives.
- PCA Board (June 09) Created "Ad-hoc RDL Team" to recommend a plan. (Active during Aug / Sep 09)
 - Robin (lead), Petter, David, Kåre, Nils, (Ian / Neill liaisons)
- FIATECH Board (Sep 09) Created 15926 / El9 Governance team, expressed commitment and asked EL9 Champions to create a plan.
 - Derek, Frank, Mark, Jerry, Ric + Adrian, Bruce (lead), Andy (Neill / Ian liasons)
- Joint Reviews (Oct / Nov 09) plans cross reviewed. Agree need for a single plan as a 2010 plan (NB already late for 2010 funding expectations).
- Joint Plan Created (Dec 09)
- Both Boards Agree (Dec 09 / Jan 10) to the overall plan and PM
 & agreements to fund Phase F. Prioritized deliverables for Phase F
- Phase F Funding & Contracting & Governance put in place (Jan / Feb 10)
 - Robin, Jann, Nils, Frank, Mark, Ric (Governance) + Ian (PM)
- Go ... 1st Mar 2010 ...

Project Announced Starting March 2010	To estab	olish PCA & F	IATECH Refe	al RDS/WIP Prence Data resustaining ope	sources
Phase E (Existing & Pre- Agreement)	Existing PCA RDS / mdb / xls / xml / html & Existing IDS-ADI / iRING / p2/7/8/9 triple stores	Existing PCA & FIATECH membership & project activities. Outline planning agreement.	Existing PCA RDL 15926 p3/p4 content & PCA extensions & Existing proposed user content.	Existing PCA RDL	Existing PCA RDS Operational Support SLA
Phase F (Front-End Establishment)	Nil	Establishing PM. Planning Ph1/Ph2. Funding model. Business-case(s). Creating EL9/15926 "road-map" context.	Nil (Only as funded by existing projects)	Ongoing as existing	Ongoing as existing
Phase 1 (Enhancement & RFP)	Minimum maintenance development of existing mixed systems & tools.	Agree compliance methodology. Synchronization of mixed systems. Create specification for third-party RFP.	Extend Core RDL to Template Signatures <i>Initial set</i> consistent with methodology	New Content Projects (AEX Schema) (Proteus Schema) (Budgetted and planned projects, but not part of Operational	Enhanced PCA SLA to support Ph1 systems, business & content.
Phase 2 (New Development)	Develop and migrate content to new third-party supported systems & services.	Place contracts for new third-party systems & services.	Nil (Separate funded projects)	RDS/WIP project scope)	New SLA's based on third-party RFP.


The Joint Operational RD Project - Phase F

F = Front-End Establishment

- Business, Funding & Governance model for ongoing operation.
- Road-map for combined PCA & FIATECH EL9/15926 strategies as context for other collaborations & developments.
- Planning & Estimating for Phases 1 & 2
- Resourcing & Bidding strategies for Phases 1 & 2
- Reviews with Key Stakeholders.
- Risks & Mitigations.

Improving the interim situation

The Joint Operational RD Project - Phase 1

Manage the interim endpoint improvements (above).

Consolidate & agree compliance & usage methodology and enhance *Core* Class & Template Content consistent with this & add Part 3 Geometry *Base & Core* Templates.

Develop RFP(s) for enhanced systems & services, from Existing PCA RDS systems and service level agreements Avalon proposed service requirements Agreed business model for ongoing operational needs Agreed packaging per bidding strategy

Joint Operational RD Project - Phase 2 Implement & Deliver Operational Services

Reference Content Business Services

- •(Free to All) Read & Licensed Use
- •(Free to All ?) New ID-Generate & Licensed Use
- •(Subs-based ?) Content-management & validation
- •(Subs-based?) Support to users & SIG's
- (Subs-based ?) Certified-write
- •(Fee-based?) Content & standardization proposals from users & SIG's
- •(Fee-based ?) Certification of users and tools
- (Fee-based?) Training & related consulting
- •(?) Voluntary tool taxes / royalties

Subs =

Payment per annum

Fee =

Payment per scope

AVALON Substrate

Provider Relationships Management

Scalability Management Service Subset Management

Software Management Admin Management

AVALON Infrastructure

Network Access Provider Application Hosting Provider Content Storage Provider

Backups Provider

Operations Charging Provider

