
ISO 15926 Templates

Building a rich ontology on the basis of ISO 15926 Part 2

Johan W. Klüwer
ISO 15926 and Semantic Web technologies, Sogndal , September 12, 2008

Current practice and tools I: RDE

Reference Data Editor

Compliant with ISO 15926-2

Available at
rds.posccaesar.com

A tool for ISO 15926 experts, not so
much for Oil & Gas domain experts

Current practice and tools II: MS Excel

Spreadsheets are still in wide use for defining reference data

Advantage: Domain experts tend to like tables

Disadvantage: Complete lack of support for building correct structures

Creating a good ontology using spreadsheets is practically impossible

Current practice and tools III: Protégé

A generic ontology editor

Supports loading ISO
15926 Part 2 in OWL format

Supports loading
reference data in OWL
format

Like the RD Editor, an expert tool

Wanted: A simple, compliant interface

Standardized modelling practice

Tools that are familiar to domain experts
- Protégé, RDE are out

Tools that support the user and check correctness
- Excel is out

Tools that provide for working at a suitable level of abstraction
- Most ontology editors expose the user to too much ”assembly code”

Building domain ontologies with templates

An ontology is used to record statements. That’s semantics.

To build the RDL, we need to represent facts about a given domain using
the language of ISO 15926

Ideally, a domain expert states the facts, and the machine interprets the
facts automatically

A template is a pattern for stating facts

A Template for ISO 15926 is a predicate, a statement form,
a pattern for facts

A template has a signature defining the form of a statement
- What arguments need to be given
- What are their types

Each template has an interpretation rule that interprets facts that fit the
pattern

- Reducing a complex statement into simpler ones
- Eventually, to atomic statements in ISO 15926
- Yielding an expression of the fact in the ontology language

Current prototype developed in the Intelligent Data Sets (IDS) project

Template example I

Constraint: A car has 3 or more wheels

Express the constraint with a suitable template

Parts-at-least (Car, Wheel, 3) !

Rules generate a set of ISO 15926 statements

“ The statement

Parts-at-least (C, D, i)

means that

Any C has at least i D’s as parts ”

Template example I

Assume that any car has 3 or more wheels

Expressed with a suitable template Parts

Parts-at-least (Car, Wheel, 3) !

Rules generate a set of ISO 15926 statements

… as illustrated by this figure

A familiar interface

Making the statement

Parts-at-least (Car, Wheel, 3)

requires no detailed knowledge about modelling

A list of arguments can easily be stored in a table (Excel!)

Correctness of the generated ontology structure can be checked using
generic ontology tools

Car Wheel 3

Bicycle Wheel 1

And this can be used for ...

Translation by means of templates

A simple mapping
into template statements

Data inData in
TemplateTemplate
FormatFormat

Data inData in
TemplateTemplate
FormatFormat

And back
again

lifting lowering

DB

Ontology
DB

DB

Template example II

A fairly complex claim (from IDS prototype)

“The ambient temperature during operation of a 3051CG pressure
transmitter should be within -40 and 85 degrees Celsius.”

Six arguments are required for a precise statement

“The body height of a human is a length property
which varies from 50 to 250 cm”

Property with Scale and Quantification

Classified

Classifier

“The ambient temperature during operation of a 3051CG pressure
transmitter should be within -40 and 85 degrees Celsius.”

Sample
device
class

Property Range

Classified

Classifier

Property Range Restriction

Model: Ambient Temperature Range

3051CG ambient temperature: -40°C – 85°C3051CG ambient temperature: -40°C – 85°C

Templates for ontology development

A flexible and precise language for ontology building

Let the compiler handle the “assembly language”

Creating rich semantic structure becomes practical

Standardization of templates makes standardized modelling patterns
possible

Results can be consistency checked using automated reasoning*

*i.e., experimental verification

And we have even tried it out ...

Translation in practice

Mapping into
template statements

Data inData in
TemplateTemplate
FormatFormat

Data inData in
TemplateTemplate
FormatFormat

Mapping into
target format

IDS converter

lifting lowering

DB

Project
DB

(OWL)

DB

SWRL SPARQL

OWL DL
reasoner:
• consistency
• type
inference

XQuery XQuery

In XML format

In XML format

Our Protégé-OWL laboratory

Transmitter 3051CG

<AScCC>
<ASc_Part>

<designation>Wheel</designation>
</ASc_Part>
<ASc_Whole>

<designation>Car</designation>
</ASc_Whole>
<RCard_Lower1>

<content […]>1</content>
</RCard_Lower1>
<RCard_Upper1/>

</AScCC>

<AScCC>
<ASc_Part>

<designation>Wheel</designation>
</ASc_Part>
<ASc_Whole>

<designation>Car</designation>
</ASc_Whole>
<RCard_Lower1>

<content […]>3</content>
</RCard_Lower1>
<RCard_Upper1/>

</AScCC>

<AScCC>
<ASc_Part>

<designation>Wheel</designation>
</ASc_Part>
<ASc_Whole>

<designation>Car</designation>
</ASc_Whole>
<RCard_Lower1>

<content […]>3</content>
</RCard_Lower1>
<RCard_Upper1/>

</AScCC>

<AScCC>
<ASc_Part>

<designation>Wheel</designation>
</ASc_Part>
<ASc_Whole>

<designation>Car</designation>
</ASc_Whole>
<RCard_Lower1>

<content […]>3</content>
</RCard_Lower1>
<RCard_Upper1/>

</AScCC>

<AScCC>
<ASc_Part>

<designation>Wheel</designation>
</ASc_Part>
<ASc_Whole>

<designation>Car</designation>
</ASc_Whole>
<RCard_Lower1>

<content […]>3</content>
</RCard_Lower1>
<RCard_Upper1/>

</AScCC>

Input in a straightforward XML format

A car has at least three wheels.A car has at least three wheels.

Input data in Protege

Executing template rules

Protege provides a SWRL
workbench

editor

Jess rule engine interface

Individuals from rules and inference

A consistency check

*i.e., experimental verification

Example: Temperature range, once more

Lift!

Mapped into an XML template

The range as an ISO 15926 Property Range

Visualization in Protégé

Breakdown using Parts template

Breakdown visualized in Protégé

Ranges of the whole and of parts

So many screenshots. Any moral to this?

ISO 15926 languages: SW perspective

The template statement is uninterpreted

The signature is just a list of types

Sample statement ID(#34567, ”John”):

x1 x2hasNext
List

hasContent hasContent

#34567 ”John”

ID &

List

Rules encode interpretation patterns

If ID(x, y),
- there is some z s.t. z is a ClassOfIdentification relation, with

- x in the hasIdentified,
- y in the hasIdentifier role

x y

z

Class of identification

hasIdentified hasIdentifier

An interpreted statement

The rule provides a structure that has interpretation in terms of Part 2

x1 x2

#34567 ”John”

ID &

List List

#87694

Class of identification

hasIdentified hasIdentifier

Sample rules

coidTriple(x, y, z) iff
- ClassOfIdentification(x) & hasIdentified(x, y) & hasIdentifier(x, z)

ID(x, y) iff
- ∃z(coidTriple(z, x, y)

IDC(x, y, z) iff
- ID(x, y) & ∀u(coidTriple(u, x, y) → u ∈ z

etc.

Probably, all this can be expressed in SWRL.*

Regular logic?

*RIF!

An extended ontology

Develop templates to cover the expressive needs

This provides a theory of industrial notions

This theory is also reference data

Templates extend the RDL

We need appropriate tools and theory to work with this ontology.

Extended ontology, new work to be done

If F has a rule like the following,

but other rules (or Part 2 itself) tell us,

then F is unsatisfiable. A reasoner should be able to discover this.

Consistency checking for templates

F(x, y, z)

G(x, y) H(x, y) I(x, y)

G(x, y) I(x, y)iff not

Experimental checking
Make statements in the template language,
Execute rules,
Run reasoner to check consistency of the result

Systematic checking
Is the template language consistent?

etc.

Consistency checking for templates

Reasoner tasks

Satisfiability of templates

Equivalence between templates

Subsumption hierarchies (more/less general templates)

Simplification (of signatures, rules)

Explanation (why was my statement rejected?)

Challenge: To provide these not just for Part 2, but for templates as well.

	ISO 15926 Templates
	Current practice and tools I: RDE
	Current practice and tools II: MS Excel
	Current practice and tools III: Protégé
	Wanted: A simple, compliant interface
	Building domain ontologies with templates
	A template is a pattern for stating facts
	Template example I
	Template example I
	A familiar interface
	And this can be used for ...
	Translation by means of templates
	Template example II
	Property with Scale and Quantification
	Property Range
	Property Range Restriction
	Model: Ambient Temperature Range
	Templates for ontology development
	And we have even tried it out ...
	Translation in practice
	Our Protégé-OWL laboratory
	Transmitter 3051CG
	Input in a straightforward XML format
	Input data in Protege
	Executing template rules
	Individuals from rules and inference
	A consistency check
	Example: Temperature range, once more
	Mapped into an XML template
	The range as an ISO 15926 Property Range
	Visualization in Protégé
	Breakdown using Parts template
	Breakdown visualized in Protégé
	Ranges of the whole and of parts
	So many screenshots. Any moral to this?
	ISO 15926 languages: SW perspective
	The template statement is uninterpreted
	Rules encode interpretation patterns
	An interpreted statement
	Sample rules
	An extended ontology
	Extended ontology, new work to be done
	Consistency checking for templates
	Consistency checking for templates
	Reasoner tasks

