

Integrated Lifecycle Assets Planning (ILAP) standard

ILAP project team 2 September, 2013

The Integrated Lifecycle Assets Planning (ILAP) standard

- 1. The ILAP project
- 2. What is the ILAP standard?
- 3. Who is involved in the ILAP standard?
- 4. Why an ILAP standard?
- 5. What are the deliverables from the ILAP project?
- 6. How is the ILAP standard developed?

THE ILAP PROJECT

ILAP project

- > ILAP project is funded by
 - ✓ ConocoPhillips Scandinavia AS
 - ✓ ENI Norge AS
 - √ Statoil Petroleum AS

All operators on the NCS (all member s of EPIM) are invited to participate in the ILAP project

Contractor - management

- > EPIM (<u>www.epim.no</u>)
 - Established and governed by the operators on the NCS
 - ✓ Facilitating solutions and services for the oil & gas industry through standardization of requirements and processes

Sub-contractor - standardization

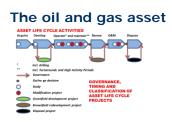
- PCA (<u>www.posccaesar.org</u>)
 - ✓ Focus on life cycle industry data integration and interoperability through GIM standard and W3C recommendations

EPIM solutions based on the GIM standard:

- ✓ EPIM ReportingHub drilling and production
- ✓ EPIM EqHub standard equipment information
- ✓ EPIM EnvironmentHub environment data
- ✓ EPIM LogisticsHub tracking of CCUs

PCA has the custody of the **Generic Information Modeling (GIM)** standard (ISO 15926) and has been heavily involved in the development of EPIM's solutions above.

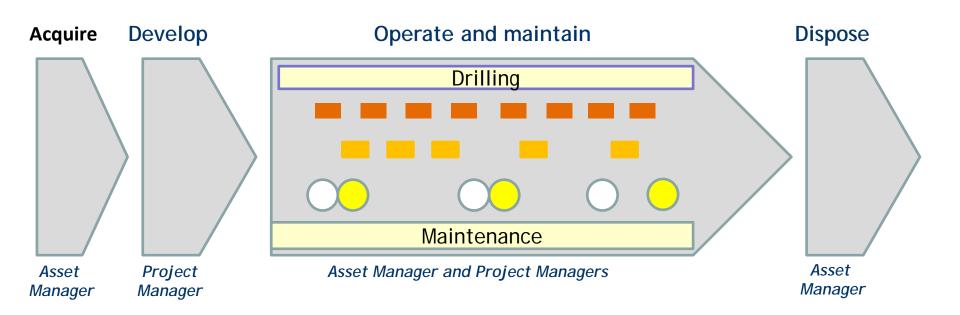
WHAT IS THE ILAP STANDARD?


Integrated Lifecycle Assets Planning (ILAP) standard

The integrated life cycle assets planning (ILAP) standard will increase the lifecycle value of the physical assets by defining, developing, implementing and deploying a common planning standard for exchange and sharing of plan data between relevant stakeholders across all phases of the asset lifecycle.

ILAP shall cover planning activities for:

- Assets management lifecycle value optimization for physical assets
- Project management -planning of projects in all asset lifecycle phases
- Adapted for use in the oil & gas industry
- Integrated and modeled for interoperability (machine readability)



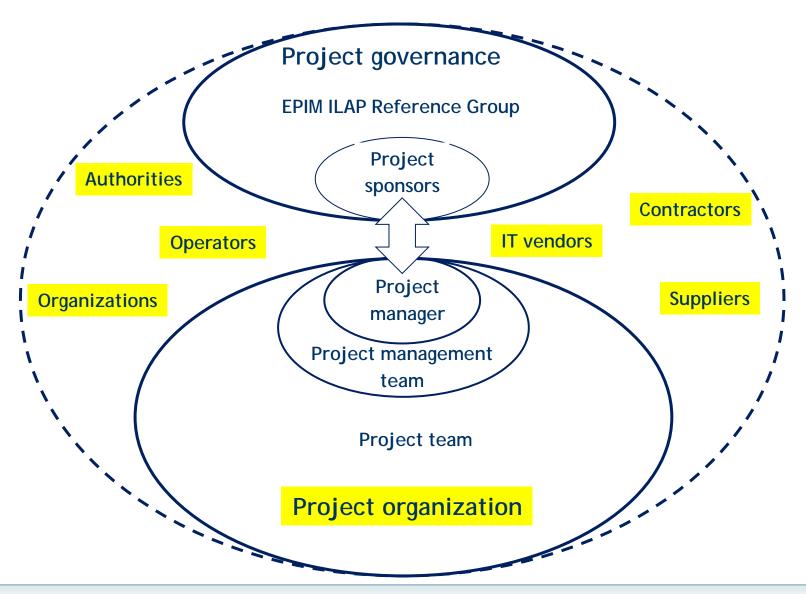
ILAP greenfield development project*

ASSET MANAGEMENT PROCESSES INSERTED CHANGES start-up completion **Production** Mechanical Sanction Consent **Project Management Initiating Hand-over Project Workflow** * Adapted from ISO 21500 **PROJECT** (the process management interactions in ISO 21500 **BOUNDARY** must be adapted to reflect **ENVIRONMENTAL IMPACT** the dynamic nature of projects in the oil & gas industry)

ILAP operations and maintenance

Note the transfer of responsibility between Asset Manager and Project Manager at the start of projects, and transfer back to Asset Manager at the completion of projects

ILAP classification framework


Actor Structure	Type of Project	Activity Structure	Unit of Analysis	Development Objectives	Focus Area
Asset Owner	Fesibility and Concept	Aquire	Portfolio	Sustainable development	Continent
License Parnter	Green Field project	Develop	Program	Incremental improvement	Country
Contractor	Brown Field project	Operate	Project	Radical change	Area
Vendor	Operation	Maintain	Contract	Disaster revocery	Field
Service Supplier	Maintenance	Renew	Work Packet	Managed closedown	Facility
Other Actors	Modification	Dispose	Task	Org. Learning	Well

WHO IS INVOLVED IN THE ILAP STANDARD?

ILAP stakeholder model

WHY AN ILAP STANDARD?

General business case for GIM standard

NORSOK concluded in 1995 that, the GIM technology had a potential of reducing CAPEX and OPEX with 25% and 20%, respectively.

NOK 50 billion in cost reduction per year on the NCS!

Think global – act local!

Initiator	Standardization	Operations	Potential	
Environment reporting	Part of GIM	EPIM EnvironmentHub	License to operate	
Drilling/prod. reporting	Part of GIM	EPIM ReportingHub	NOK 10+ billion per year	
Top site	Part of GIM		NOK ? billion per year	
Subsea installation	Part of GIM		NOK ? billion per year	
Equipment	Part of GIM	EPIM EqHub	NOK 10 billion per year	
Logistics	Part of GIM	EPIM LogisticsHub	NOK 2 billion per year	

General business case for EPIM's solutions

Internal costs External costs

Operators cost structure: 20 % 80 %

Consequence:

Common industry requirements: 5 times higher cost reductions!

Individual operator requirements: Not sustainable

Plus the benefit of sharing development and operations costs!

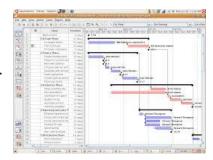
Example 1 ILAP as common industry requirement

25% cost reduction within planning for the operators Internal 5% 25% cost reduction within planning for the suppliers External 20%

Total cost reduction for the operators 5% x5 = 25%

Example 2 ILAPs as individual operator requirements

25% cost reduction within planning for the operators Internal 5% 10% cost increase within planning for the suppliers External -8%


Total cost increase for the operators 3 %

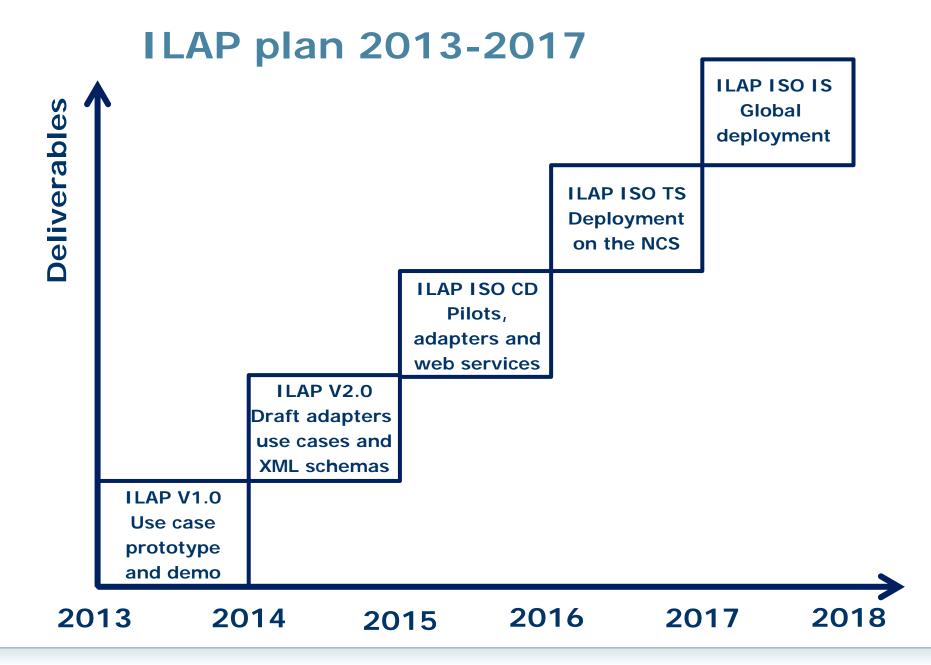
Potential of ILAP

Transfer and integration of plan data

Planning efficiency

25%

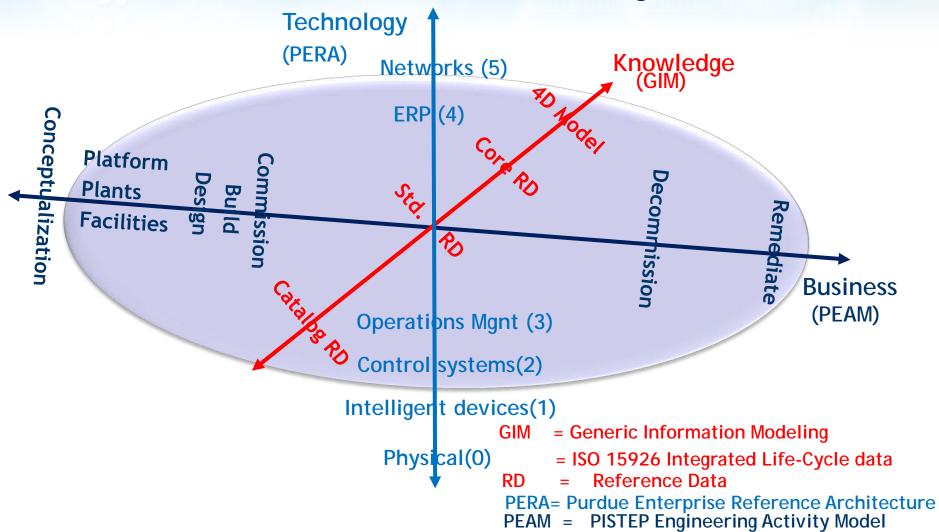
Transfer of experience



Planning effectiveness

NOK 5 billion per year

WHAT ARE THE DELIVERABLES FROM THE ILAP PROJECT?



HOW IS THE ILAP STANDARD DEVELOPED?

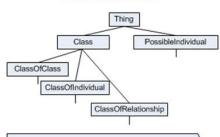
Holistic view on Asset Management

GIM Reference Data Library

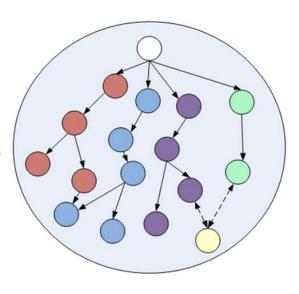
Domain Specific Nomenclatures

Health, Safety & Environment

Seismic


Drilling & Completion

Reservoir & Production


Operations & Maintenance

Logistics & Transportation

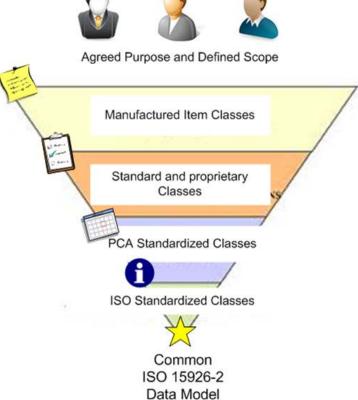
Integrated Lifecycle Asset Planning GIM Data Model

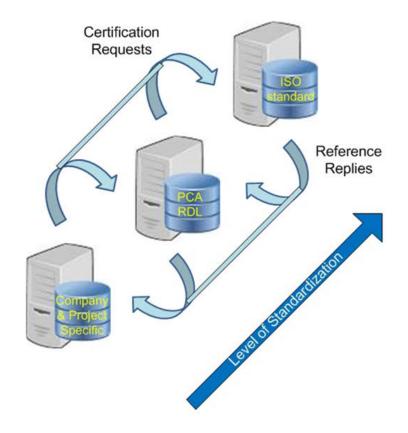
Structure and add to PCA Reference Data Library (RDL) PCA (Oil & Gas & Process Industry Ontologies and Reference Data)

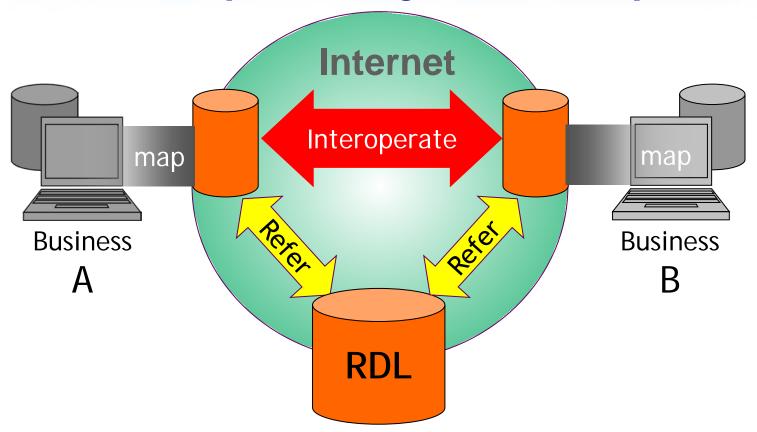
Determine entity type

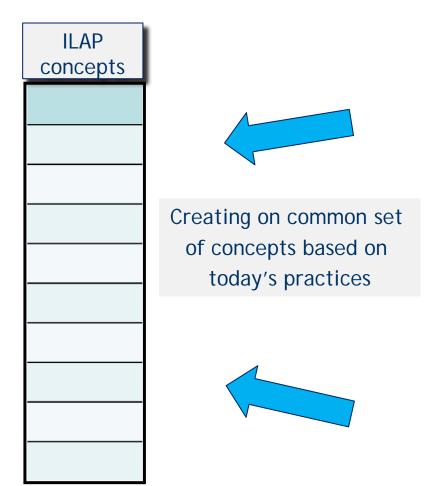
Determine specialization and other relationships

GIM Reference Data System


Logical organization of reference data


Federated arrangement of many web connected libraries




GIM interoperability at its simplest

Using *standard shared references* & sharing references used, reduces business ambiguity & reduces mapping overheads.

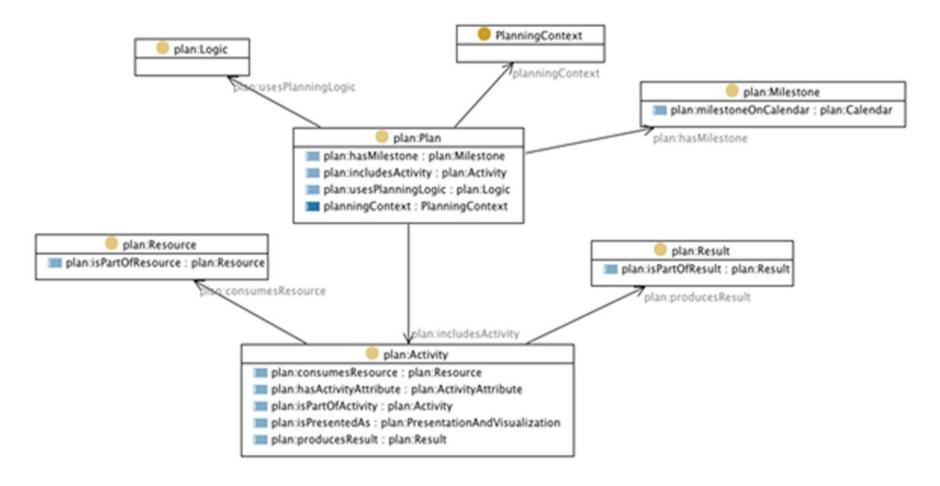
Makes interoperability easier and reduces risk & cost

Define one set of ILAP concepts (reference data) from many sources

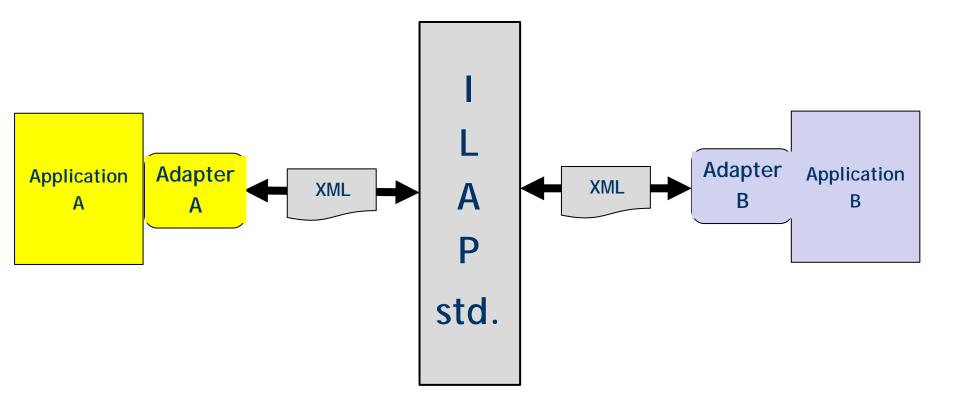
Terminology used by the ISO and operators

ISO terms	PCA RDL terms	CoP terms	ENI terms	Statoil terms	VDT terms
Aq ba	d relevant te	Vm			
	or defini	ng a unified	ious models et of Refere		
		100	et of Refere	here and us	9 25
				Sata ten	$n_{\mathcal{S}}$

For each of these reference data sources we need to identify, clarify and unify their models (documents and drawings) and extract all relevant terms and definitions


Terminology in planning tools

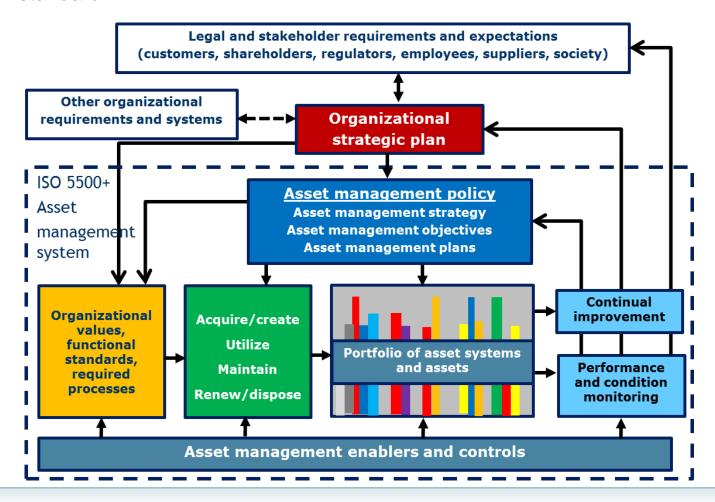
For each of these tools we need to identify, clarify and unify how these tools use terms (documents and drawings) and extract all relevant terms and definitions for use in the Reference Data Library



GIM modeling of the ILAP standard using the common set of reference data

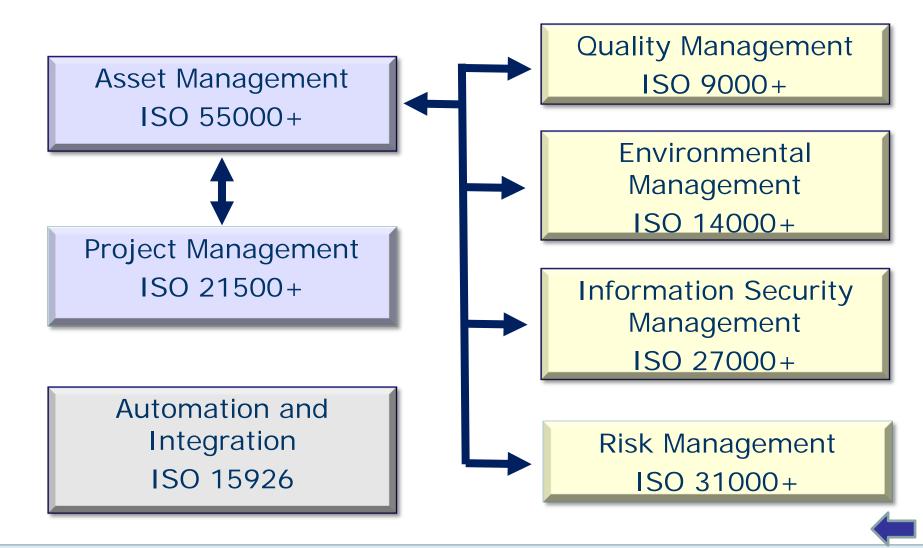
Deploying the ILAP standard - exchange of plan data using XML schemas

Note that the application providers have to build adapters for exchanging ILAP plan data

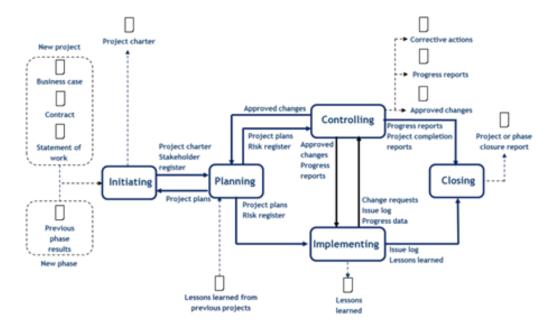


THANK YOU FOR YOUR ATTENTION!

Asset management (ISO 55000+)


Asset management perspective is needed for defining the strategic and tactic planning activities of lifecycle optimization across the corporate physical assets. ISO has developed assets management standards (ISO 55000+) and these will be the base for asset management part of the ILAP standard.

Asset Management in ISO

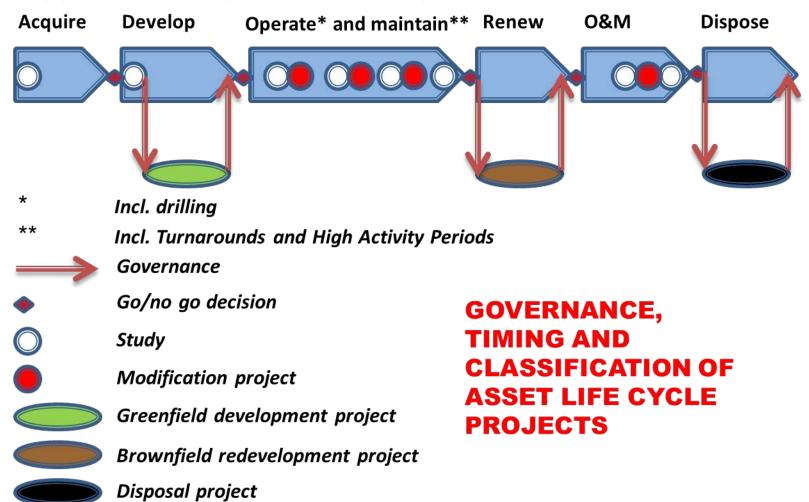


Project management (ISO 21500+)

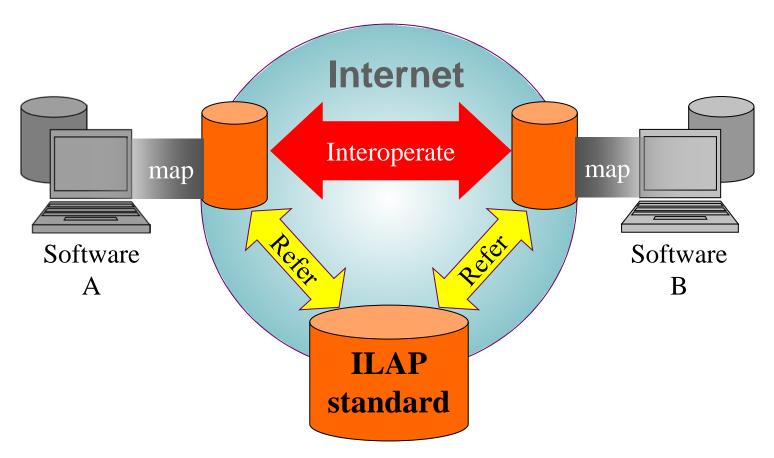
PMI and BSI have been the drivers of developing standards for project management in USA and UK, respectively. Now they have joined forces and are now developing a series of ISO standards numbering ISO 21500+. These standards will be the base for the project management part of the ILAP standard with necessary adaption to the oil and gas industry.

Subject group	Process group					
	Initiating	Planning	Implementing	Controlling	Closing	
Integration	Develop project charter	Develop project plans	Direct project work	Control project work Control changes	Close project phase/project Collect lessons learned	
Stakeholder	Identify stakeholders		Manage stakeholders			
Scope		Define scope Create WBS Define activities		Control scope		
Resource	Establish project team	Estimate resources Define project organization	Develop project team	Control resources Manage project team		
Time		Sequence activities Estimate activity durations Develop schedule		Control schedule		
Cost		Estimate costs Develop budget		Control costs		
Risk		Identify risks Assess risks	Treat risks	Control risks		
Quality		Plan quality	Perform quality assurance	Perform quality control		
Procurement		Plan procurements	Select suppliers	Administer procurements		
Communication		Plan communications	Distribute information	Manage communications		

Process management groups interactions



Asset lifecycle projects


ASSET LIFE CYCLE ACTIVITIES

ILAP interoperability

Using standard shared references & sharing references used, reduces business ambiguity & reduces mapping overheads.

Makes interoperability easier and reduces risk & cost

ILAP project organization

Reference Group

Robert A. Skaar, (Chair) Statoil
Jan Gunnar Valaker, ConocoPhillips
Hans van der Burg, ENI
Ove Ryland, (Observer) EPIM
Nils Sandsmark, (Observer) PCA

Project Management

Thore Langeland, (Manager) EPIM
Tore R. Christiansen, (Co-manager) PCA

ProjectPlace

Henning Lillejord, CoPNo Terje Strømstad, CoPNo Staale Waagen, CoPNo Claus Østergård, CoPNo Jan-Oddvar Søvik, ENI Oddvar Ringheim, Lundin Arvid Meland, Statoil Knut Grini, Statoil Per Willy Hetland, Statoil

II AP standard

Tore R. Christiansen, PCA Per Willy Hetland, Statoil Lillian Helle, PCA Håvard Ottestad, PCA nn, ??

ILAP use case

Tore R. Christiansen, PCA
Terje Strømstad, CoPNo
Lillian Helle, PCA
Håvard Ottestad, PCA
nn, ??

O&M preparation and Web Services

Nils Sandsmark, PCA

Stakeholder communications

Thore Langeland, EPIM

ISO communications

Nils Sandsmark, PCA

Marketing

Thore Langeland, EPIM

Norwegian governmental agencies

The oil and gas resources:

✓ Norwegian Petroleum Directorate (NPD) - largest possible value for the society

The HSE regulations:

- ✓ Petroleum Safety Authority Norway (PSA) safety and working environment
- ✓ Norwegian Environment Agency (NEA) environmental matters
- ✓ Norwegian Radiation Protection Authority (NRPA) radiation/nuclear
- ✓ Directorate of Health (DH) public health and living conditions
- ✓ Norwegian Food Safety Authority (NFSA) seafood/ health and welfare of fish

Operators on the NCS in 2013

Operators

A/S Norske Shell **Bayerngas Norge AS BG Norge AS BP Norge AS Bridge Energy Norge AS Centrica Resources** (Norge) AS **Chevron Norge AS** ConocoPhillips Skandinavia **Dana Petroleum Norway AS** Det norske oljeselskap ASA **DONG E&P Norge AS E.ON E&P Norge AS Edison International Norway Branch**

Operators (Cont.)

Eni Norge AS

ExxonMobil Exploration &

Production Norway AS Faroe Petroleum Norge AS **GDF SUEZ E&P Norge AS** Gassco AS **Idemitsu Petroleum Norge AS Ithaca Petroleum Norge** AS **Lotos Exploration and Production Norge AS Lundin Norway AS** Maersk Oil Norway AS Marathon Oil Norge AS **Noreco Norway AS**

Operators (Cont.)

North Energy ASA OMV (Norge) AS PGNIG Upstream International AS **Premier Oil Norge AS Repsol Exploration Norge AS Rocksource Exploration Norway AS RWE Dea Norge AS Statoil Petroleum AS Suncor Energy Norge AS** Talisman Energy Norge AS **Total E&P Norge AS Tullow Oil Norge AS VNG Norge AS** Wintershall Norge AS

ILAP relevant organizations

Standard organizations

PCA MIMOSA

Standard Norge

ANSI (BMI) BSI

ISO

ISO TC 184 Automation & Integration

> ISO TC 251 Asset management

ISO TC 258
Project management

Interest organizations

EPIM

NOROG Konkraft

NSP

Fiatech

Construction Industry Institute (CII)

Educational organizations

BI

NTNU

UiO

University of South Australia

University of Texas, Austin

IT vendors

Software for project planning:

- ✓ Microsoft MS project
- ✓ Oracle Primavera
- ✓ Promatica AnyPlan
- ✓ Safran
- \checkmark

Software for operation & maintenance:

- ✓ Intergraph Smartplant
- ✓ AVEVA Workmate
- ✓ Bentley
- ✓ SAP
- ✓ .

Contractors/Suppliers

Contractors:

- ✓ Aibel
- ✓ Aker Solutions
- ✓ Apply Sørco
- ✓ Bechtel
- ✓ CCC
- ✓ Fabricom
- ✓ Fluor
- ✓ Hart Construction
- ✓ Kværner
- ✓ Reinertsen
- ✓ Rosenberg
- ✓ Technip
- ✓ Worley Parsons
- \checkmark

Suppliers:

- ✓ ABB
- ✓ Baker Hughes
- ✓ Emerson
- ✓ Halliburton
- ✓ Odfjell Drilling
- ✓ Seadrill
- \checkmark
- **√**

Challenges in transfer of plan data

Terminology

- ✓ Activity not connected to operator's project identifier
- ✓ Task not connected to contractor activity
- ✓ Activity (contractual estimate) not maintained after detail task has been defined

Methdology

- ✓ Same plan is used to house several projects across time
- ✓ Cost control or «notes» modelled as activities (non-prod.time, conditions)
- ✓ Change management of attributes, e.g. custom fields

Structures and formats

- ✓ Duplicated or changed identifiers, «copy-paste planning»
- √ Lack of corporate reference data

> Other challenges

- ✓ Rules regarding plans maintained in two parallel systems (e.g. Safran and SAP)
- ✓ Complex work breakdown –e.g. a SAP work order with several sub work orders both levels having operations, and possibly sub-operations
- Different interpretations on how date sets are used in plans
- ✓ Difference in relation between activity and jobcards (1..*, 1..1)
- Many different jobcard systems, not tightly connected to planning systems
- ✓ Time horizon on plans
- ✓ Data models in different plan systems varies a lot
- ✓ Different plan-update cycles

Lately overruns on the NCS

Overruns compared to PDO:

NOK 95 billion in 2008

NOK 40 billion in 2012

In 2013 MPE asked NPD to review the overruns and come up with a recommendation for strengthen the transfer of experience between the operators to avoid repetition of mistakes.

