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Statistics for bioinformatics
Climate Change and Insurance Industry

Statistics for complex design of clinical studies

ComplexDepend - Statistics for complex stochastic dependence
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FindOil -
Genestat -
Infect -
StatMarine -

TotalRisk -

Statistics for modelling customer life in an insurance company
Electricity price sensitivity

Statistics for oil and gas exploration

Statistics for genomic research

Modelling spread of infectious diseases in fish farming
Statistics for management of Norwegian marine resources

Statistics for modelling the risk of financial institutions
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Gene therapy

» Treats genetic diseases by replacing the defective
gene with a functional one

» The working gene is introduced via a virus - the vector,
which integrates into the DNA

» Where in the DNA?

» Different viruses prefer different integration regions.

» In trials, gene therapy caused too often leukemia.
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» Integration behaviour is a major safety issue in gene therapy.



Moloney murine leukaemia virus (MLV)
Human immunodeficiency virus (HIV)

» Do HIV and MLV have different preferred areas of

iIntegrations?
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» Comparing two densities, estimated non-parametrically
» Different sample sizes: uncertainty is different!

» Where are the densities significantly different?
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Estimated Comparative Integration Hotspots Identify
Different Behaviors of Retroviral Gene Transfer Vectors
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Abstract

Integration of retroviral vectors in the human genome follows non random patterns that favor insertional deregulation of
gene expression and may cause risks of insertional mutagenesis when used in clinical gene therapy. Understanding how
viral vectors integrate into the human genome is a key issue in predicting these risks. We provide a new statistical method
to compare retroviral integration patterns. We identified the positions where vectors derived from the Human
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» Confidence bands for non-parametrically estimated densities are difficult!
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The 0.99 variability band for this density was computed starting with
the Taylor expansion

T"'ar[ﬁ)* %ﬁ}g(ﬂ) where R(K)=IK2(\)d\

The root transform allows to obtain an approximation of the variance which
is independent from the unknown density. Therefore, on the square root
scale, a level error band can be computed, using the half width

R(K)
%\ 4nh

where Z% is the quantile of the normal standard distribution.
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The variability band is transformed back to the original scale as
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» 94 comparative hotspots are found significant.

virus chr strand start end length OR adjusted-p # genes
hiv chrit + 63052973 68240744 5187771 8.73 1.16e-052 177
hiv chré - 29857643 34003291 4145648 25.59 7.53e-046 171
hiv chri1é - 0 3573133 3573133 9.82 1.85e-045 171
L L T 0w
hiv chri1 - 63408683 68252636 4843953 5.23 6.59e-045 169
hiv chré + 29653216 33939640 4286424 31.23 2.42e-043 179
hiv chr16 + 0 3106569 3106569 13.06 3.32e-042 153
hiv chr1 + 0 4770330 4770330 14.32 1.66e-027 89
hiv chr3 - 46696908 53554160 6857252 4.03 1.58e-025 159
hiv chr17 - 70567573 74031223 3463650 4.35 1.14e-024 81
hiv chr17 + 77083925 78700791 1616866 8.53 2.45e-024 56
hiv chr9 + 136302969 140273252 3970283 7.96 4.03e-023 97

» HIV hotspots contained more genes than MLV hotspots.

» HIV hotspots showed enrichment of genes involved in antigen processing.

MOLECULAR
BIOLOGY

» Important indications for drug design.




Gene therapy
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The Genomic HyperBrowser

Comparing two tracks

1.

Representation of generic genomic elements as mathematical objects on
the line.

Hypotheses of interest are translated into mathematical relations between
these objects.

Concepts of randomization and track structure preservation are used to
build problem-specific null models of the relation between two tracks.

Formal inference is performed at a global or local scale, taking confounder
tracks into account when necessary.



1. Representation of genomic elements on the real line.

Five genomic types: UP —

MP — |
= unmarked points (UP),

= marked points (MP), us L~ H ]
= unmarked segments (US), MS [l [

» marked segments (MS) W
= functions (F). F

These five types completely represent every one-dimensional geometry with marks.




2. Catalogue of investigations

We translate biological hypotheses of interest on the relation between
the two tracks, into a study of statistical relations between the
geometric objects.

This leads to a large collection of generic investigations.



Example: Relation between histone modifications and gene expression

» Biology:
Does the number of nucleosomes with a given histone modification correlate

with the expression of that gene?

» Representation:
histone modifications: points
gene expressions: marked segments

= Generic investigation between a pair of tracks (T1=UP, T2=MS).
Is the number of T1 points inside T2 segments correlated with T2 marks?

15 5 12




Example: Are T1=UP and T2=UP differentially located, more than
expected by chance?
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We have currently implemented about 20 different analyses, including:

e UP-UP-Frequencies

e UP-UP-Distance Between Points

e US-US-Overlap

e US-US-Similar Segments

e UP-US-Located Inside

e UP-US-Located Nearby

e UP-US-Located Nonuniformly Inside

e UP-F-Higher Values At Locations

e US-F-Higher Value Inside

e F-F-Similarity

e MP-MP-Similar Marks In Nearby Points

e MP-MS-Similar Marks Of Points And Segments Where Points
e UP-MS-Located In Highly Marked Segments



3. Global and local inference

» A global analysis investigates if a certain relation between two tracks is
found in a domain (typically a chromosome) as a whole.

» Alocal analysis is based on partitioning the domain into smaller units —
bins, and performing the analysis in each bin separately.

» Local analysis is used to investigate if and where two tracks display
significant discordant behaviour, generating hypotheses on the existence of
biological mechanisms explaining such perturbations.

Inference is then based on the computation of p-values, locally in each
bin, or globally, under the null model.



Bins = scale

» Not too large (but not too empty either)

» Freedman and Diaconis automatic rule for histograms
» Self defined bins

» Adaptive binning (no test where there are no chances)

» Scan statistics, moving window



Example: Viral integration.

Track 1: integration sites for a specific retrovirus (UP).
Track 2: 2 kb flanking regions of predicted promoters (US)

Question: Where in the genome, are the points falling inside the segments
more than expected by chance?

P-values in bins across the genome.
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Derse et al J Virol 2007, 81:6731-6741.



4. Null models

» “uniform” -- unrealistically simple null models may lead to false positives.

» The Genomic HyperBrowser allows the user to define an appropriate null
model by specifying

(a) a preservation rule for each track, and

(b) a stochastic process, describing how the non-preserved elements
should be randomized.

» Preservation fixes (some) elements or characteristics of a track as present in
the data.

» For each genomic type, we developed a hierarchy of less and less strict
preservation rules, starting from preserving the entire track exactly



» (&) preservation rule for each track

For example, if one track is US:

I e I e I e I S -

(i) preserve all, as in data;

(i) preserve segments and intervals between segments, in number and
length, but not their ordering;

(iif) preserve only the segments, in number and length, but not their position;

(iv) preserve only the number of bps in segments, not segment position or
number.

» (b) a rule on how the non-preserved elements should be randomized:

(i) permute segments and intersegments

(i) permute segments and give a law that says the length of the
intersegments

(iv) give a law to generate segments and intersegments



» Depending on the test statistic T, the level of preservation and the chosen
randomization, p-values are computed exactly, asymptotically or by standard
or sequential Monte Carlo.

» Preservation leads to conditional p-values, given preservation and
randomisation rules. P-values are not ordered even if the preservations rules
are so. This is in analogy to tests for two-by-two contingency tables, where
row or column totals can be preserved - or not -, though p-values are not

decreasing.

» Choices of the null should reflect biological knowledge. Very hard. Should
in principle model 3-4 billion years of the random processes that contributed

to evolution.



Monte Carlo Test

When the exact calculation of the p-value is not possible, nor asymptotic
arguments can be applied, standard or sequential Monte Carlo testing is
performed.

Assume T is test statistics with observed value To.

Histogram of test_statistic

p-value = P ( T>To | Ho) _

300

Sample new data according to Ho
Compute test statistics T

Repeat B (many) times

Check where To falls.

Estimate prob. > To.

Frequency
200

100

akhwbrE




Sequential Monte Carlo testing
(Besag J, Clifford P: Sequential Monte Carlo p-values. Biometrika 1991)

» Continue to sample until the sampled test statistics T is w times larger (or
smaller, depending on side of the test) than the observed value To, or if a max
number of samples N, has been drawn.

» p-value is then = w/number of samples needed

» Typically w = 20.

» More samples needed if p-value is small, few is p-values is large.

» Large p-values are not well estimated, but it does not matter.

» Sequential MC produces p-values that can be adjusted by FDR
In the usual way



Sequential Monte Carlo multiple testing

(Sandve, Ferkingstad, Frigessi, Nygard, 2011)

» A=

» Do all tests first: sample H,, but stop as soon as the sampled test statistics T,
IS w times larger than the observed value T;: puti into A. For all other tests, N,
has been reached.

» Compute estimated p;-values, and FDR-adjusted q;-values for all tests.
» If q;<a, putiinto A.

» For the test not in A (yet), draw new N, samples and iterate.

» Stop when all tests are in A, or when max total number of samples achieved.

» Theorem: FDR(a) controlled.



Null models with confounder track

» The relation between two tracks can be modulated by a third track.

» Such a third track acts as a confounder: if ignored it leads to wrong
conclusions on the relation between the two tracks of interest.



Example: the relation of coding regions with the melting stability of
the DNA double helix

T1= UP Locations of exon boundaries (left and right)

R LRLR L R L

)00 142000 143000 1440!
Saccharomyces cerevisiae Position on chr | (bp)

T2=F Probability of melting (left and right)

—  Melting peaks appear to coincide with exon boundaries!
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» Are melting fork probabilities higher at the exon boundaries than elsewhere?
Higher than expected by chance?

» Null model: the function was conserved, while points were uniformly
randomized in each chromosome.

» Monte Carlo testing was carried out on each chromosome separately, giving
p-values <0.0005.

» There is an interesting relation between DNA melting and coding regions!



Melting fork probability

The black curve shows the GC content (%) in a 100-bp sliding window
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GC content
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0
141000 142000 143000 144000 145000

Position on chr | (bp)

An alternative view is that the GC content is governing the relation
between exons and melting probability. This because GC% is higher inside
exons than outside, and higher when melting probability is high.



Confounder tracks

» Non-preserved elements of a null model can be randomized according
to a non-homogeneous Poisson process with a bp-varying intensity, which
can depend on a third (or several) modulating genomic tracks .

» Algebra for the construction of intensities: tracks are combined in various
ways (with a biological meaning), to allow rich and flexible constructions of
randomness and to modulate the effect of other tracks on the comparison.



Question "Do the elements of the two tracks show positive association, more
than what expected by the fact that both are associated to the third track?”

» Non-homogeneous Poisson process on the line.

» The intensity A;(b) describes how "nature™ has randomised the elements, now
observed as in the present genomic track.

» Athird track can be used as intensity curve in randomisation: in this way, all
simulated Monte Carlo configurations would adhere to the third track.

» Small p-values would indicate that the association between the two tracks is
significantly higher than what expected by their joint dependency on third track.

» When still significant concordance, there must be other phenomena that act on
the association, in addition to the third track — a further mechanism of interference.



» The GC-content function is
used as intensity A;(b) when
randomizing exons.

Melting fork probability

141000 142000 143000 144000 145000
Position on chr | (bp)

» When performing the same analysis as before, but now using the null
model based on the GC intensity curve, a significant relationship was found

only in one yeast chromosome.

» There is a melting-exon relationship in yeast, but it may simply be a
consequence of differences in GC content at the exon boundaries, which may
exist for biological reasons not involving melting fork locations. However, there
might be some additional local mechanism disturbing the association in one

chromosome.

GC content
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p >>> n regressions in genomics

P .
Yi = Z BJXJ(J) T €, /

j=1

|
=
>

Bone biopsy data (Reppe et al., 2010)
e n = 84 women, y bone density, p = 22815 gene expressions
GWAS, Parkinson’s disease data (Hamza et al., 2010)

e n = 3986 cases and controls, p = 811917 SNPs,
logistic regression



n=198 breast cancer patients

p = 19800 genes

survival angery

Which genes (if any) can help make a prognosis and predict survival?

Variable selection.



The linear regression model

Y, = Zﬁj ) te i

Y=XpB+¢

responses

p<n

i=1,...

p>n



The linear regression model

p<n More patients than unknowns!

Less patients than unknowns!

) >n . . . : :
p= Non-identifiable. Infinitely many equivalent solutions.

p=20 000 genes
n=100 patients



y = X3+ € with p >>n

Goals:
e Prediction of new response, w.r.t. squared prediction error
e Estimation of 3, w.r.t. ||3 — 8|

e Variable selection, estimating active set (variables with
coefficient # 0)

p >> n: Fewer equations than unknowns - infinitely many
solutions - need to impose additional assumptions.

Many approaches:

e Bayesian variable selection
e Forward selection
e Preliminary dimension reduction (pre-selection)

e Penalization and shrinking



l1 penalized regression

Regularize with /1-penalty: ||3]|1 = Zle En

B = argming(—n~11(8) + AllBl1)
I(B) log-likelihood function, A > 0 penalization parameter.
Much theory:

e Assume that the true solution is sparse,
|Active set| = sp is small < n << p.

e |f sparsity is actually true, you will recover it (theorems and
algorithms).

e |f truth not sparse, then no method can do well
(Bihlmann, Van de Geer).
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Regression Shrinkage and Selection via the Lasso

By ROBERT TIBSHIRANIt
University of Toronte, Canada

[Received January 1994, Revised January 1995]

SUMMARY

We propose a new method for estimation in linear models. The ‘lasso’ minimizes the
residual sum of squares suhjcct to the sum of the absolute value of the coefficients being less
than a constant. Because of the nature of this constraint it tends to produce some
coefficients that are exactly 0 and hence gives interpretable models. Our simulation studies
suggest that the lasso cnjoys some of the favourable properties of both subset selection and
ridge regression, It interpretable models like subset selection and exhibits the
stability of ridge rq;rmcn There is also an interesting relationship with recent work in
adaptive function estimation by Donoho and I ohnsl.om The lasso |d=a is quite general and
can be applied in a variety of to g T4 models
and tree-based models are briefly described.

Keywords: QUADRATIC PROGRAMMING; REGRESSION; SHRINKAGE; SUBSET SELECTION

» Selects the few variables which are really useful!

The LASSO

B(A) =argmin( |[Y = XB3/n+AlIBl

p

» Estimates the parameters

fit

penalisation



The lasso (Tibshirani, 1996)

P
B = argmin{lly = XBI3+A>_ |51},
j=1
NB: MAP estimate with doubly-exponential prior on 3.

Lasso does variable selection:(many) parameters are estimated to
be exactly zero. To see this, use the equivalent form

it

3 = argming, 5, <rlly — XB|[3/n

B A min [[Y —XB|3 B, 4 min ||Y - XB|3

Brae2) = argmin ¥ ~ XI5 -+ 2 513 )
f3 \



Choosing the penalization parameter A

K-fold cross-validation

o Make a grid of Apjn < A < Apax = max; |ijy| (no variable
selected).

e Minimize estimated prediction error CV/(\) over A-gridpoints.

e For the linear model:

CV(\) = Z > (i — 97K )

k 1 iEfy

fi is the set of indices for samples in fold k, j?j-_k()\) is the
fitted predicted value for observation i when fold k involving
observation i is left out of the estimation.



n=198 breast cancer patients

p = 19800 genes

I Radiotherapy or not
survival after surgery NN

Which genes (if any) can help to decide when radiotherapy prolongs survival?

Variable selection of the genes that interact with radiotherapy.
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Conclusions

@ Statistics for Innovation is an
exciting and successful
experiment on the international
arena of statistics

@ A new sfi applicationisin
progress.

@ Exiting years to come for
statistics!

@ There should be many exciting
occasions of collaborations, across
disciplines.
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