

What it is *not*.

Verification:

- system whose behaviour is formally specified
- verify that the system does satisfies a certain (temporal) property before actually running the system

What it is.

Runtime Verification:

- system whose behaviour can only be observed
- monitor the system behaviour during runtime and raise an alarm if a certain (temporal) property is violated





What it *really* is.

We need to explain in more detail:

• how properties can be specified;

linear temporal logic LTL

syntax

LTL-formulae are built from propositional variables and the constants true and false using

- Boolean operators $\phi \land \psi, \phi \lor \psi, \neg \phi, \phi \Rightarrow \psi, \dots$
- the Next operator $X\phi$
- the Until operator $\phi \cup \psi$

Abbreviations:
$$\Diamond \phi := \text{true } \mathsf{U} \, \phi$$
 (eventually ϕ)
$$\Box \phi := \neg \Diamond \neg \phi \quad \text{(always } \phi)$$

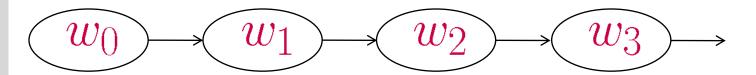
example

If the resource is granted to process a, then it cannot be granted to process b until process a has released the resource.

 $\Box(grant(a) \Rightarrow (\neg grant(b) \cup release(a)))$

semantics

LTL structure: sequence $\mathfrak{W} = (w_i)_{i=0,1,...}$ of propositional interpretations



Validity of ϕ in $\mathfrak W$ at time i (written $\mathfrak W, i \models \phi$) is defined inductively:

semantics

The LTL formula ϕ is satisfiable iff it has a model i.e., there is an LTL structure \mathfrak{W} such that $\mathfrak{W}, 0 \models \phi$.

Validity of ϕ in $\mathfrak W$ at time i (written $\mathfrak W, i \models \phi$) is defined inductively:

```
egin{aligned} & \mathfrak{W}, i \models p & \text{iff} & w_i \text{ makes } p \text{ true} \\ & \mathfrak{W}, i \models \text{true} & \text{iff} & \cdots \\ & \mathfrak{W}, i \models \phi \land \psi & \text{iff} & \mathfrak{W}, i \models \phi \text{ and } \mathfrak{W}, i \models \psi \\ & \mathfrak{W}, i \models \phi \lor \psi & \text{iff} & \cdots \\ & \mathfrak{W}, i \models \mathsf{X}\phi & \text{iff} & \mathfrak{W}, i+1 \models \phi \\ & \mathfrak{W}, i \models \phi \ \mathsf{U} \ \psi & \text{iff} & \text{there is } k \geq i \text{ such that} & \mathfrak{W}, k \models \psi \text{ and} \\ & \mathfrak{W}, j \models \phi \text{ for all } j, i < j < k \end{aligned}
```


semantics

The LTL formula ϕ is satisfiable iff it has a model i.e., there is an LTL structure \mathfrak{W} such that $\mathfrak{W}, 0 \models \phi$.

 $\mathfrak{W}, 0 \models \phi$ "\mathbb{W} satisfies \phi" $\mathfrak{W}, 0 \not\models \phi$ "\mathbb{W} violates \phi"

Deciding satisfiability:

- For every LTL-formula ϕ we can construct a Büchi automaton \mathcal{A}_{ϕ} such that
 - $L(\mathcal{A}_{\phi})$ consists of the models of ϕ , viewed as infinite words, and thus ϕ is satisfiable iff $L(\mathcal{A}_{\phi}) \neq \emptyset$.
 - The size of \mathcal{A}_{ϕ} is exponential in the size of ϕ .

What it *really* is.

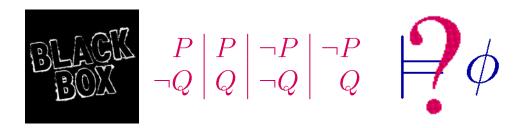
We need to specify in more detail:

• how properties can be specified;

linear temporal logic LTL

- how the monitor is supposed to work:
 - What does it receive as input?
 - What should it yield as output?

The runtime verification problem

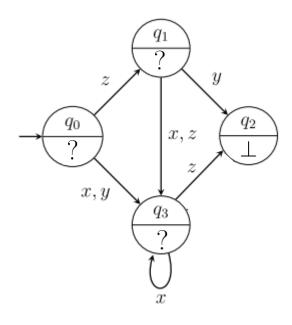


At each time point, we have seen a finite initial fragment \mathfrak{U} of an LTL-interpretation.

The monitor

$$\mathfrak{U} = \begin{array}{c|c} P & P & \neg P \\ \neg Q & Q & \neg Q \end{array}$$

$$y \quad x \quad z$$



A monitor for ϕ is a deterministic finite automaton \mathcal{M}_{ϕ} with state output such that the following holds:

- if state q is reached from the initial state with input \mathfrak{U} ,
- then the output of state q is $m(\mathfrak{U}, \phi)$.

The monitor

A monitor \mathcal{M}_{ϕ} can be constructed from the Büchi automata \mathcal{A}_{ϕ} and $\mathcal{A}_{\neg \phi}$ for ϕ and $\neg \phi$

- apply powerset construction to the Büchi automata
- build the product automaton
- compute the output of each state by reachability analyses in \mathcal{A}_{ϕ} and $\mathcal{A}_{\neg\phi}$

Complexity:

- The size of \mathcal{M}_{ϕ} is doubly exponential in the size of ϕ .
- The time needed to execute a single transition and to output the value does not depend on the length of the initial fragment \(\mathcal{U} \) already read.

• The monitor can compute $m(\mathfrak{U}, \phi)$ in time linear in the length of \mathfrak{U} .

Runtime Verification using a Temporal Description Logic

ontology-based runtime verification

Avoid limitations of purely propositional approach:

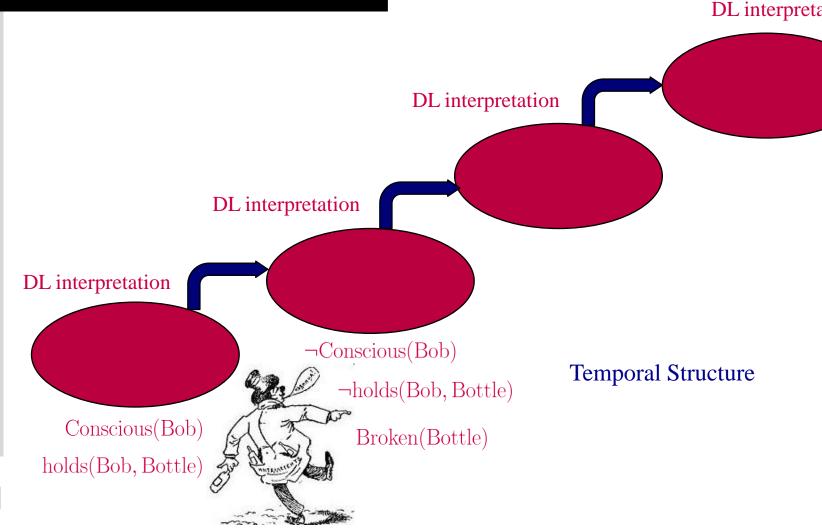
Description Logic interpretations can have a complex relational structure.

describe incomplete knowledge.

Properties need to be formulated in a temporal Description Logic.

Combining DLs with TLs

two-dimensional semantics



Degrees of freedom

which DL and which TL?

prototypical

TL dimension: LTL

 $\phi \land \psi, \phi \lor \psi, \neg \phi, \mathsf{X}\phi, \phi \mathsf{U}\psi$

Concept description language

Constructors of the DL ALC:

 $C \sqcap D, C \sqcup D, \neg C, \forall r.C, \exists r.C$

A man

that has a rich or beautiful wife,

a son and a daughter,

and only nice friends.

TBox

definition of concepts

 $Happy_man \equiv Human \sqcap \dots$

ABox

properties of individuals

 $Happy_man(Franz)$ $married_to(Franz, Inge)$ child(Franz, Luisa)

Degrees of freedom

Which pieces of DL syntax can temporal operators be applied to?

Temporal operators used as concept constructors:

∃finding.Concussion ☐ Conscious U∃procedure.Examination

Temporal operators applied to TBox axioms:

 $\Diamond \Box (\mathsf{UScitizen} \sqsubseteq \exists \mathsf{insured_by}.\mathsf{HealthInsurer})$

Temporal operators applied to ABox assertions:

 $\Diamond((\exists finding.Concussion)(BOB) \land Conscious(BOB) \cup (\exists procedure.Examination)(BOB))$

Our choice

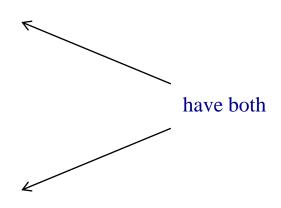
Degrees of freedom

Are there rigid concepts/roles whose interpretation does not vary over time?

Rigid concepts/roles:

have the same extension in every world of the temporal structure

Human, has_father



Flexible concepts/roles:

extension may change when going to another world of the temporal structure

Conscious, insured_by

Our choice

ALC-LTL

syntax

\mathcal{ALC} -LTL formulae are defined by induction:

- if α is an \mathcal{ALC} -TBox axiom or an \mathcal{ALC} -ABox assertion, then α is an \mathcal{ALC} -LTL formula;
- if ϕ , ψ are \mathcal{ALC} -LTL formulae, then so are $\phi \wedge \psi$, $\phi \vee \psi$, $\neg \phi$, $\phi \cup \psi$, and $X\phi$.

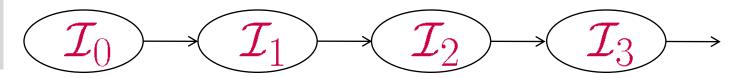
The set of concept (role) names is partitioned into sets of rigid and flexible (concept) role names.

semantics

ALC-LTL structure

sequence $\mathfrak{I} = (\mathcal{I}_i)_{i=0,1,\dots}$ of \mathcal{ALC} -interpretations $\mathcal{I}_i = (\Delta, \cdot^{\mathcal{I}_i})$

- over the same domain
- obeying the unique name assumption for individuals (UNA)
- interpreting all individuals as well as the rigid concept and role names in the same way



semantics

Given an \mathcal{ALC} -LTL formula ϕ , an \mathcal{ALC} -LTL structure $\mathfrak{I}=(\mathcal{I}_i)_{i=0,1,...}$, and a time point $i \in \{0, 1, 2, ...\}$, validity of ϕ in \Im at time i (written $\Im, i \models \phi$) is defined inductively:

The \mathcal{ALC} -LTL formula ϕ is satisfiable iff there is an \mathcal{ALC} -LTL structure \Im such that \Im , $0 \models \phi$.

Satisfiability in ALC-LTL

	With rigid names	Without rigid names
ALC-LTL	2-EXPTIME-complete	EXPTIME-complete

With rigid names: both rigid and flexible concepts and roles

Without rigid names: all concepts and roles are flexible

For every \mathcal{ALC} -LTL-formula ϕ we can construct a Büchi automaton \mathcal{A}_{ϕ} such that:

- $L(A_{\phi})$ consists of (abstractions of) the models of ϕ .
- Without rigid names, the size of A_{ϕ} is exponential in the size of ϕ .
- With rigid names, the size of A_{ϕ} is doubly exponential in the size of ϕ .

Runtime verification in \mathcal{ALC} -LTL

The case of complete observations:

monitor "sees" (abstractions of) ALC-interpretations.

For every \mathcal{ALC} -LTL-formula ϕ we can construct a correct monitor \mathcal{M}_{ϕ} of size

• doubly exponential in the size of ϕ for formulae without rigid names.

Runtime verification in ALC-LTL

The case of incomplete observations:

monitor "sees" ALC-ABoxes.

The sequence of \mathcal{ALC} -interpretations $\mathcal{I}_1\mathcal{I}_2 \dots \mathcal{I}_k$ is a precification of the sequence of ABoxes $\mathcal{A}_1\mathcal{A}_2 \dots \mathcal{A}_k$ if

$$\mathcal{I}_i$$
 is a model of \mathcal{A}_i $(i = 1, \dots, k)$

$$m(\mathcal{A}_{1} \dots \mathcal{A}_{k}, \phi) = \begin{cases} \top & \text{if } m(\mathcal{I}_{1} \dots \mathcal{I}_{k}, \phi) = \top \\ & \text{for all precifications } \mathcal{I}_{1} \dots \mathcal{I}_{k} \text{ of } \mathcal{A}_{1} \dots \mathcal{A}_{k} \end{cases}$$

$$m(\mathcal{A}_{1} \dots \mathcal{A}_{k}, \phi) = \begin{cases} \bot & \text{if } m(\mathcal{I}_{1} \dots \mathcal{I}_{k}, \phi) = \bot \\ & \text{for all precifications } \mathcal{I}_{1} \dots \mathcal{I}_{k} \text{ of } \mathcal{A}_{1} \dots \mathcal{A}_{k} \end{cases}$$
? otherwise

Runtime verification in \mathcal{ALC} -LTL

The case of incomplete observations:

monitor "sees" ALC-ABoxes.

For every \mathcal{ALC} -LTL-formula ϕ we can construct a correct monitor \mathcal{M}_{ϕ} of size

• doubly exponential in the size of ϕ for formulae without rigid names.

References

Andreas Bauer, Martin Leucker, and Christian Schallhart.
 Monitoring of real-time properties.
 In Proceedings of the 26th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS06), volume 4337 of Lecture Notes in Computer Science, Springer-Verlag, 2006.

- Franz Baader, Silvio Ghilardi, and Carsten Lutz.
 LTL over Description Logic Axioms.
 In Proceedings of the 11th International Conference on Principles of Knowledge Representation and Reasoning (KR2008), 2008.
- Franz Baader, Andreas Bauer, and Marcel Lippmann.
 Runtime Verification Using a Temporal Description Logic.
 In Proceedings of the 7th International Symposium on Frontiers of Combining Systems (FroCoS 2009), volume 5749 of Lecture Notes in Computer Science, Springer-Verlag, 2009.

