Franz Baader Andreas Bauer

T 1D s o Marcel Lippmann NICTA Canberra
cmpora cSCripuon L.Og1C TU Dresden

Germany

Runtime Verification using a

Runtime Verification What it is not.

Verification:

e system whose behaviour is formally specified

e verify that the system does satisfies a certain (temporal) property

before actually running the system

Dresden © Franz Baader

Runtime Verification What it is.

Runtime Verification:

e system whose behaviour can only be observed

e monitor the system behaviour during runtime and

raise an alarm if a certain (temporal) property is violated

Dresden © Franz Baader

‘ Runtime Verification I What it really is.

We need to explain in more detail:

e how properties can be specified;

linear temporal logic LTL

Dresden © Franz Baader

Linear Temporal Logic LTL syntax

Dresden

LTL-formulae are built from propositional variables and
the constants true and false using

e Boolean operators © A Y, ¢ V U, m0, 0 = U, ...
e the Next operator X¢

e the Until operator ¢ U 1)

Abbreviations: (¢ :=true U ¢ (eventually ¢)
[:= =0—¢ (always ¢)

© Franz Baader

‘ Linear Temporal Logic LTL I example

If the resource 1s granted to process a,

then it cannot be granted to process b

until process a has released the resource.

[I(grant(a) = (—grant(b) U release(a)))

Dresden © Franz Baader

Linear Temporal Logic LTL B semantics

LTL structure: sequence 20 = (w;); 0.1.... of propositional interpretations

CO—CoD—~W2)—(Ws)—

Validity of ¢ in 20 at time 7 (written 20, 7 = ¢) is defined inductively:

Dresden © Franz Baader

Linear Temporal Logic LTL B semantics

The LTL formula ¢ is satisfiable iff it has a model
i.e., there is an LTL structure 20 such that 20, 0 = ¢.

Validity of ¢ in 20 at time 7 (written 20, 7 = ¢) is defined inductively:

W,ikE=p iff w; makes p true
0,0 = true iff .-

W.ik=oAy iff Wik dand Wiy
WiV iff ---

0,1 = Xo iff W,i+1E ¢
W.i=oeUy iff thereis k > isuchthat 20, k = v and
W.,jEopforall j,i <j<k

Dresden © Franz Baader

Linear Temporal Logic LTL B semantics

The LTL formula ¢ is satisfiable iff it has a model
i.e., there is an LTL structure 20 such that 20, 0 = ¢.

W.0 = ¢ “0 satisfies ¢”
W, 0 ¢ “ violates ¢

Deciding satisfiability:

e For every LTL-formula ¢ we can construct a Biichi automaton A, such that
— L(A,;) consists of the models of ¢, viewed as infinite words, and thus

¢ is satisfiable iff L(A,) # (.

— The size of A, is exponential in the size of ¢.

Dresden © Franz Baader

‘ Runtime Verification I What it really is.

We need to specify in more detail:

e how properties can be specified;

linear temporal logic LTL

e how the monitor is supposed to work:
— What does it receive as input?

— What should it yield as output?

Dresden © Franz Baader

‘ The runtime verification problem I

At each time point, we have seen a finite initial fragment £l

of an LTL-interpretation.

Dresden © Franz Baader

The monitor

ﬂQ‘Q

y T =z

A monitor for ¢ is a deterministic finite automaton M, with state output
such that the following holds:

e if state g is reached from the initial state with input LI,

e then the output of state ¢ is m(Ll, @).

Dresden © Franz Baader

The monitor

A monitor M, can be constructed from the Biichi automata A, and A ; for ¢ and —¢
e apply powerset construction to the Biichi automata
e build the product automaton

e compute the output of each state by reachability analyses in A, and A,

Complexity:
e The size of M, is doubly exponential in the size of ¢.

e The time needed to execute a single transition and to output the value
does not depend on the length of the initial fragment 41 already read.

e The monitor can compute m (4L, ¢) in time linear in the length of 4.

Dresden © Franz Baader

Runtime Verification using a
ontology-based runtime verification

Temporal Description Logic

Avoid limitations of purely propositional approach:

Description Logic interpretations can have
a complex relational structure.

Lol ll}bl\}ll 1_1\}61\.— INLIN VY l\/U&\J Udow will
V' describe incomplete knowledge.

Properties need to be formulated in a temporal Description Logic.

Dresden © Franz Baader

Combining DLs with TLs two-dimensional semantics

DL interprete

DL interpretation

DL interpretation

DL interpretation

—Conscious(Bob)

Temporal Structure
—holds(Bob, Bottle)

Conscious(Bob) Broken(Bottle)
holds(Bob, Bottle)

Dresden © Franz Baader

Degrees of freedom I which DL and which TL?

prototypical

C1D,CLUD,~C,Vr.C,3r.C

DL dimension: ALC

TL dimension: LTL

O NP, bV D, =d, X, ¢ U

Dresden © Franz Baader

COnCept deSCI’iption |anguage Constructors of the DL ALC:
cCnbD,CuUD,~CVr.C dr.C

A man
that has a rich or beautiful wife,
a son and a daughter,

and only nice friends.

‘ TBox I ‘ ABox I

definition of concepts properties of individuals
Happy_man = Human M. ..

Happy_man(Franz)

married_to(Franz, Inge)

child(Franz, Luisa)

Dresden © Franz Baader

Degrees of freedom Which pieces of DL syntax can
temporal operators be applied to?

Temporal operators

dfinding.Con

t constructors:

nscious U dprocedure.Examination

Temporal operators applied to TBox axioms:

OO(UScitizen = dinsured_by.Healthlnsurer)

Temporal operators applied to ABox assertions:

O((finding.Concussion)(BOB) A
Conscious(BOB) U (Iprocedure.Examination)(BOB))

321042 INQO

Dresden © Franz Baader

Degrees of freedom Are there rigid concepts/roles whose
interpretation does not vary over time?

Rigid concepts/roles:

have the same extension in every world of the temporal structure

Human, has_father \

Flexible concepts/roles:

have both

321042 INQO

extension may change when going to another world
of the temporal structure

Conscious, insured_by

Dresden © Franz Baader

ALC-LTL syntax

ALC-LTL formulae are defined by induction:

e if ais an ALC-TBox axiom or an ALC-ABox assertion,
then v is an ALC-LTL formula;

o if ¢, are ALC-LTL formulae, then so are
¢NY, ¢V Y, 2o,
o U, and Xo.

The set of concept (role) names is partitioned into sets

of rigid and flexible (concept) role names.

Dresden © Franz Baader

ALC-LTL semantics

ALC-LTL structure

sequence J = (Z;); ... of ALC-interpretations Z; = (A, %)
e over the same domain
e obeying the unique name assumption for individuals (UNA)

e interpreting all individuals as well as the rigid concept and role
names in the same way

(o~ T~ T>—(Z—

Dresden © Franz Baader

ALC-LTL semantics

Given an ALC-LTL formula ¢, an ALC-LTL structure J = (Z;);—n .., and a
time point ¢ € {0,1,2,...}, validity of ¢ in J at time 7 (written J,7 = ¢) is
defined inductively:

The ALC-LTL formula ¢ is satisfiable iff

there is an ALC-LTL structure J such that J, 0 = ¢.

Dresden © Franz Baader

Satisfiability in ALC-LTL

With rigid names Without rigid names

ALC-LTL|2-EXPTIME-complete | EXPTIME-complete

With rigid names: both rigid and flexible concepts and roles
Without rigid names: all concepts and roles are flexible

For every ALC-LTL-formula ¢ we can construct a Biichi automaton A, such that:
e [(A;) consists of (abstractions of) the models of ¢.
e Without rigid names, the size of A, is exponential in the size of ¢.

e With rigid names, the size of A is doubly exponential in the size of ¢.

Dresden © Franz Baader

Runtime verification in ALC-LTL

The case of complete observations:

monitor “sees” (abstractions of) ALC-interpretations.

For every ALC-LTL-formula ¢ we can construct a correct monitor M, of size

e doubly exponential in the size of ¢ for formulae without rigid names.

e

Dresden © Franz Baader

Runtime verification in ALC-LTL

The case of incomplete observations:

monitor “sees” ALC-ABoxes.

The sequence of ALC-interpretations 7,7, . . . Z;. is a precification
of the sequence of ABoxes A A, ... A, if

Z;isamodelof A; (i=1,...,k)

(T ifm(Zy...Zy,0) =T
for all precifications Z; ... Z;. of Ay ... A,

for all precifications Z; ... Z; of Ay ... A;

| 7 otherwise

Dresden

© Franz Baader

Runtime verification in ALC-LTL

The case of incomplete observations:

monitor “sees” ALC-ABoxes.

For every ALC-LTL-formula ¢ we can construct a correct monitor M, of size

e doubly exponential in the size of ¢ for formulae without rigid names.

e

Dresden © Franz Baader

References

e Andreas Bauer, Martin Leucker, and Christian Schallhart.
Monitoring of real-time properties.
In Proceedings of the 26th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS06), volume 4337 of Lecture Notes
in Computer Science, Springer-Verlag, 2006.

e Franz Baader, Silvio Ghilardi, and Carsten Lutz.
LTL over Description Logic Axioms.
In Proceedings of the 11th International Conference on Principles of Knowledge
Representation and Reasoning (KR2008), 2008.

e Franz Baader, Andreas Bauer, and Marcel Lippmann.
Runtime Verification Using a Temporal Description Logic.
In Proceedings of the 7th International Symposium on Frontiers of Combining
Systems (FroCoS 2009), volume 5749 of Lecture Notes in Computer Science,
Springer-Verlag, 2009.

Dresden © Franz Baader

