Can Logical Reasoning be Used to Achieve Higher-Level Situation Awareness?

Franz Baader, TU Dresden, Germany

Problems

to be solved in this context

- Which logic should we use for the representation?
 - Expressiveness versus efficiency of reasoning.
 - Reasoning about data that change over time.
- How can the raw data from the preception layer be transformed into a logical representation?
 - without losing the advantage of a declarative approach.
- How can users that are not trained in formal logic interact with the system?
 - add high-level information to the knowledge base built in the comprehension layer; query this knowledge base.
- How can critical situations be monitored without requiring user interaction?

What have we done

until now to solve these problems?

- Opening doors using Description Logic ontologies.
 - Six-months pilot project funded by Siemens in the context of the intelligent house.
 - Built small ontology modelling different contexts for an intelligent door.
 - Tested whether current Description Logic reasoners are efficient enough to answer context queries.
- Use medical ontologies expressed in Description Logics to monitor the medical status of patients.
 - part of a two-year basic research project on integrating Description Logics and action languages (funded by DFG)
 - developed new temporalized Description Logic for which reasoning is more efficient than in previously proposed such logics
 - showed that this logic can be used to generate monitors (finite state automata with output)

• The SAIL project.

© Franz Baader

SAIL

Situation Awareness by Inference and Logic

Franz Baader, Andreas Bauer, Peter Baumgartner, Anne Cregan, Alfredo Gabaldon, Krystian Ji, Kevin Lee, David Rajaratnam, Rolf Schwitter

Project Background

- Joint project between National ICT Australia (NICTA) and Australia's Defence Science and Technology Organisation (DSTO)
- DSTO approached NICTA for help to build a system for higher-level situation awareness based on automated reasoning techniques
 - Go beyond state-of-the-art
 - Run as a one year pilot project
- Outcome of SAIL project:
 - Novel architecture and prototype implementation following a knowledge-based declarative approach
 - Prototypical implementation of system that employs existing reasoners and public-domain GIS system

Atlantis Scenario

- Detailled information on an evolving conflict on Atlantis
 - Geographical and political
 - Operational (air corridors) and military (assets, capabilities)
 - Sensor data (radar), spy reports
- Challenge: to reconstruct/analyse the **event list**

+20	2000	75 th Air Defence Squadron in Cambonga moves 8 x SA-10 and 8 x SA-12 to Eaglevista via rail and roads.
+21	2000	Task Group leaves North America home port (44N64W) in direction of Atlantis to a position 200 NM off
		Caltrop seaport (6330N 2730W) [1827 NM @ 15 kts = 122 hrs = 5 days 2 hours][33 hrs to reach Cape Race
		(495 NM)]
+22	1200	Blueland requests Task Group to escort the cargo from open sea to Celtic Straits.
+23	0500	Task Group waits for Cargo off Cape Race [4600N 5200W]
+23	1600	Cargo reaches Task Group off Cape Race.
+25	1200	Redland's A50-2 takes off from Becker-Bender AFB [5250N 2006W] and flies to Eaglevista.
+25	1320	2 x Su-24E (ECM) take off from Krupali and fly towards Deeland City and then to Eaglevista.

Higher-Level Situation Awareness

Q: What do these dots "mean"?

Higher-Level Situation Awareness

A: An Awacs surveilling a border, a greenpeace vessel

Combining Data/Information Sources

Problems

How did we address them in SAIL?

- Which logic should we use for the representation?
 - Expressiveness versus efficiency of reasoning.

Description Logics offer a good compromise.

Description Logics

research of the last 20 years

Phase 1:

- implementation of systems (Back, K-Rep, Loom, Meson, ...)
- based on incomplete structural subsumption algorithms

Phase 2:

- development of tableau-based algorithms and complexity results
- first implementation of tableau-based systems (Kris, Crack)
- first formal investigation of optimization methods

Phase 3:

- tableau-based algorithms for very expressive DLs
- highly optimized tableau-based systems (FaCT, Racer)
- relationship to modal logic and decidable fragments of FOL

Phase 4:

- Web Ontology Language (OWL-DL) based on very expressive DL
- industrial-strength reasoners and ontology editors for OWL-DL
- investigation of leight-weight DLs with tractable reasoning problems

Description language

Constructors of the DL ALCN:

 $C \sqcap D, C \sqcup D, \neg C, \forall r.C, \exists r.C, (\geq n \, r), (\leq n \, r)$

A man	$Human \sqcap \neg Female \sqcap$
that has a rich or beautiful wife	$\exists \textit{married_to.}(\textit{Rich} \sqcup \textit{Beautiful}) \sqcap$
and at least 3 children,	$(\geq 3 \ child) \sqcap$
all of whom are happy	$\forall child. Happy$

TBox

Dresden

definition of concepts $Happy_man \equiv Human \sqcap \dots$

more complex constraints $\exists child.Human \sqsubseteq Human$ $Professor \sqsubseteq \neg Rich$

ABox

properties of individuals

Happy_man(Franz)
married_to(Franz, Inge)
child(Franz, Luisa)

Problems

How did we address them in SAIL?

- Which logic should we use for the representation?
 - Expressiveness versus efficiency of reasoning.

Description Logics offer a good compromise.

- Reasoning about data that change over time.

Reasoning in temporalized DLs is of a very high complexity.

- partially deal with temporal information on the data aggregation layer
- produce time-stamped ABoxes
- use time-stamps in queries (but not in ontology)

Data Aggregation and Semantic Analysis

Data Aggregation

- Control program periodically invokes Data Aggregation layer on incoming Sensor Data (SD)
 - Maintains limited history of previous SD
- Data Aggregation layer analyse information over time
 - Detect capabilities: airstriker, surfacestriker
 - Synthesize events
- Specified as a disjunctive logic program (Rules)
 - Stratified default negation
 - Bottom-up evaluation, via KRHyper
 - Least model specifies an ABox

Use of logic-based programming language not vital, but declarative approach allows for easier understanding

Data Aggregation Excerpt

object_appears(Obj, Now) :current_time(Now), % supplied by control program object(Obj, Now), % Obj is in SD_{Now} previous_time(Now, T), + object(Obj, T).This is not Prolog There is no "goal" take_off(Event, Obj, Now) :object_appears(Obj, Now), in_air(Obj, Now), % in_air computed by GIS concat(['ev_',Obj,'_',Now],Event).

%% assemble resulting ABox abox(take_off(Event)) :- take_off(Event, Obj, Time). abox(time(Even, Time)) :- take_off(Event, Obj, Time). abox(object(Even, Obj)) :- take_off(Event, Obj, Time).

Semantic Analysis

Ontology contains

```
aggressive ≐ ∃ has_target.
(physical_object ⊔ space_region)
```

Data Aggregation provides concept/role assertions

```
has_target(obj1, obj2).
physical_object(obj2).
```

It follows aggressive(obj1)

Controlled Natural Language

```
Queries
What aircraft of Redland is able to reach a city of
  Blueland?
  are translated into conjunctive nRQL queries:
  (retrieve (?1)
      (and (?1 aircraft)
           (?1 s_redland associated_with)
           (?2 ?1 has_agent)
           (?2 reach)
            (?2 ?3 has_theme)
            (?3 city)
            (?3 s blueland associated with)))
  and answers are generated in CNL
```


``If we detect that an enemy aircraft has taken off, and if this aircraft crosses our border, an alarm signal should be raised.''

 $\varphi := \mathbf{G}(in_air(p) \Rightarrow \neg cross_border(p) \mathbf{U} \ landed(p)).$

Dresden

SAIL - System Architecture

Conclusions

- SAIL: Layered architecture based on different logical formalisms
 - Tableaux-based answer-set programming (data aggregation)
 - Description logic (semantic analysis)
 - Temporal logic (alert generation)
- System is implemented
 - Tested with excerpts from "Atlantis Scenario"
 - Google Earth interface, GIS system
- Short project runtime of 1 year
 - Work with existing automated reasoning systems

Triggered new theory:
new DL-extension of LTLnot yet implementedruntime verification for this logic

Questions?