
From Data to Knowledge through

Grailog Visualization
(Long version: http://www.cs.unb.ca/~boley/talks/RuleMLGrailog.pdf)

 Harold Boley
Faculty of Computer Science

University of New Brunswick

Fredericton, NB, Canada

ISO 15926 and Semantic Technologies 2013 Conference

Sogndal, Norway, 5-6 September 2013

http://www.cs.unb.ca/~boley/talks/RuleMLGrailog.pdf

1

Acknowledgements

Thanks for feedback on various versions and parts of this presentation

(the long version has all parts, hence gapless slide numbers):

Grailog 1.0: Graph-Logic Visualization of Ontologies and Rules

The 7th International Web Rule Symposium (RuleML 2013),

University of Washington, Seattle WA, 11-13 July 2013

The Grailog Systematics for Visual-Logic Knowledge Representation with Generalized Graphs

Faculty of Computer Science Seminar Series, University of New Brunswick, Fredericton, Canada, 26 September 2012

High Performance Computing Center Stuttgart (HLRS), Stuttgart, Germany, 14 August 2012

Grailog: Mapping Generalized Graphs to Computational Logic

Symposium on Natural/Unconventional Computing and its Philosophical Significance,

AISB/IACAP World Congress - Alan Turing 2012, 2-6 July 2012, Birmingham, UK

The Grailog User Interface for Knowledge Bases of Ontologies & Rules

OMG Technical Meeting, Ontology PSIG, Cambridge, MA, 21 June 2012

Grailog: Knowledge Representation with Extended Graphs for Extended Logics

SAP Enterprise Semantics Forum, 24 April 2012

Grailog: Towards a Knowledge Visualization Standard

BMIR Research Colloquium, Stanford, CA, 4 April 2012

PARC Research Talk, Palo Alto, CA, 29 March 2012

RuleML/Grailog: The Rule Metalogic Visualized with Generalized Graphs

PhiloWeb 2011, Thessaloniki, Greece, 5 October 2011

Grailog: Graph inscribed logic

Course about Logical Foundations of Cognitive Science, TU Vienna, Austria, 20 October -10 December 2008

http://www.cs.unb.ca/~boley/talks/RuleMLGrailog.pdf
http://2013.ruleml.org/presentations/RuleMLGrailog.pdf
http://2013.ruleml.org/presentations/RuleMLGrailog.pdf
http://2013.ruleml.org/presentations/RuleMLGrailog.pdf
http://www.mrtc.mdh.se/~gdc/work/AISB-IACAP-2012/Presentations/BoleyHarold-RuleMLGrailog-AISB-IACAP.pdf
http://www.cs.unb.ca/~boley/talks/RuleMLGrailog-OMG.pdf
http://www.slideshare.net/PhiloWeb/rule-ml-grailog
http://www.slideshare.net/PhiloWeb/rule-ml-grailog
https://www.ict.tuwien.ac.at/lva/Boley_LFCS/LFCS-grailog.pdf

3

Visualization of Data
• Useful in many areas, needed for big data

• Gain knowledge insights from data analytics,
ideally with the entire pipeline visualized

• Statistical visualization Logical visualization

Sample data

visualization

(http://wordle.net):
Word cloud

for frequency

of words from

BMIR abstract

of this talk

http://wordle.net/

4

Visualization of Data & Knowledge:

Graphs Remove Entry Barrier to Logic

• From 1-dimensional symbol-logic knowledge
specification to 2-dimensional graph-logic
visualization in a systematic 2D syntax

– Supports human in the loop across knowledge
elicitation, specification, validation, and reasoning

• Combinable with graph transformation,
(‘associative’) indexing & parallel processing
for efficient implementation of specifications

• Move towards model-theoretic semantics

– Unique names, as graph nodes, mapped directly/
injectively to elements of semantic interpretation

8

Grailog
Graph inscribed logic provides intuition for logic

Advanced cognitively motivated systematic

graph standard for visual-logic data & knowledge:

 Features orthogonal easy to learn,
e.g. for (Business) Analytics

Generalized-graph framework as one uniform
 2D syntax for major (Semantic Web) logics:

Pick subset for each targeted knowledge base,
map to/fro RuleML sublanguage, and exchange

& validate it, posing queries again in Grailog

http://www.cs.unb.ca/~boley/talks/DistriSemWeb.pdf
http://www.cs.unb.ca/~boley/talks/DistriSemWeb.pdf
http://www.cs.unb.ca/~boley/talks/DistriSemWeb.pdf

10

Generalized Graphs

to Represent and Map Logic Languages

According to Grailog 1.0 Systematics

• We have used generalized graphs for representing
various logic languages, where basically:
– Graph nodes (vertices) represent individuals, classes, etc.

– Graph arcs (edges) represent relationships

• Next slides:
What are the principles of this representation and
what graph generalizations are required?

• Later slides:
How are these graphs mapped (invertibly) to logic,
thus specifying Grailog as a ‘GUI’ for knowledge?

• Final slides:
What is the systematics of Grailog features?

11

Grailog Principles
• Graphs should make it easier for humans to read

and write logic constructs via 2D state-of-the-art
representation with shorthand & normal forms,
from Controlled English to logic

• Graphs should be natural extensions (e.g. n-ary)
of Directed Labeled Graphs (DLGs), often used
to represent simple semantic nets, i.e. of atomic
ground formulas in function-free dyadic predicate
logic (cf. binary Datalog ground facts, RDF triples,
the Open Graph, and the Knowledge Graph)

• Graphs should allow stepwise refinements for all
logic constructs: Description Logic constructors,
F-logic frames, general PSOA RuleML terms, etc.

• Extensions to boxes & links should be orthogonal

http://en.wikipedia.org/wiki/Datalog
http://www.w3.org/TR/rdf-primer/
https://developers.facebook.com/docs/opengraph/
http://www.google.com/insidesearch/features/search/knowledge.html
http://dl.kr.org/
http://flora.sourceforge.net/tutorial.php
http://flora.sourceforge.net/tutorial.php
http://flora.sourceforge.net/tutorial.php
http://www.cs.unb.ca/~boley/talks/SemanticsPsoaRules-talk-UNB2011.pdf

14

Grailog Generalizations

• Directed hypergraphs: For n-ary relationships,

directed relation-labeled (binary) arcs will be generalized

to directed relation-labeled (n-ary) hyperarcs, e.g.

representing relational-database tuples

• Recursive (hierarchical) graphs: For nested terms

and formulas, modal logics, and modularization, ‘flat’

graphs will be generalized to allow other graphs as

complex nodes to any level of ‘depth’

• Labelnode graphs: For allowing higher-order logics

describing both instances and relations (predicates),

arc labels will also become usable as nodes

15

Graphical Elements: Names

• Written into boxes (nodes):

Unique (canonical, distinct) names

– Unique Name Assumption (UNA)

refined to Unique Name Specification (UNS)

• Written onto boxes (node labels):

Non-unique (alternate, ‘aka’) names

– Non-unique Name Assumption (NNA)

refined to Non-unique Name Specification (NNS)

• Grailog combines UNS and NNS: xNS, with x = U or N

unique

non-unique

16

Instances: Individual Constants

with Unique Name Specifications

unique

Warren Buffett

General: Graph (node) Logic

US$ 3 000 000 000

General Electric

Examples: Graph Logic

unique

Warren Buffett

US$ 3 000 000 000

General Electric

mapping

17

Instances: Individual Constants

 with Non-unique Name Specifications

General: Graph (node) Logic (vertical bar
 for non-uniqueness)

Examples: Graph Logic

|non-unique

|WB

|US$ 3B

|GE

mapping

WB

GE

US$ 3B

non-unique

18

Graphical Elements: Hatching Patterns

• No hatching (boxes): Constant

• Hatching (elementary boxes): Variable

19

Parameters: Individual Variables

General: Graph (hatched node) Logic (italics font,
 POSL uses “?” prefix)

Examples: Graph Logic

variable

X

A

Y

variable

X

Y

A

http://ruleml.org/

20

Predicates: Binary Relations (1)

inst1

General: Graph (labeled arc) Logic

Example: Graph Logic

binrel(inst1, inst2) inst2

binrel

Warren Buffett General Electric
Trust

Trust(Warren Buffett,

 General Electric

)

21

Predicates: Binary Relations (2)

General: Graph (labeled arc) Logic

Example: Graph Logic

binrel(var1, var2)
binrel

Trust
Trust(X,Y) X Y

var1 var2

29

Graphical Elements: Arrows (1)

• Labeled arrows (directed links) for arcs and

hyperarcs (where hyperarcs ‘cut through’ nodes

intermediate between first and last)

30

Predicates: n-ary Relations (n>1)

inst1

General: Graph (hyperarc) Logic

Example: Graph Logic

(n=3)

rel(inst1, inst2, ...,

 instn-1, instn)
inst2

rel

Invest Invest(|WB,

 |GE,

 US$ 3·109)

instn instn-1

US$ 3·109

WB GE

33

Implicit Conjunction of Formula Graphs:

Co-Occurrence on Graph Top-Level

inst1,1

rel1(inst1,1, inst1,2,

 ..., inst1,n1)
inst1,2 inst1,n1

instm,1
relm(instm,1, instm,2,

 ...,instm,nm)
instm,2 instm,nm

...
rel1

relm

General: Graph (m hyperarcs) Logic

Example: Graph (2 hyperarcs) Logic

...

Invest(|WB, |GE,

 US$ 3·109)

Invest(|JS, |VW,

 US$ 2·104)

Invest US$ 3·109

Invest US$ 2·104

WB GE

JS VW

34 Explicit Conjunction of Formula Graphs:

 Co-Occurrence in (parallel-processing) And Node

inst1,1

(rel1(inst1,1, inst1,2,

 ..., inst1,n1)
inst1,2 inst1,n1

instm,1
relm(instm,1, instm,2,

 ...,instm,nm))
instm,2 instm,nm

...
rel1

relm

General: Graph (solid+linear) Logic

Example: Graph Logic

...

Invest
(Invest(|WB, |GE,

 US$ 3·109)
US$ 3·109

Invest
Invest(|JS, |VW,

 US$ 2·104))
US$ 2·104

WB GE

JS VW

37 Disjunction of Formula Graphs:

 Co-Occurrence in Or Node

inst1,1

(rel1(inst1,1, inst1,2,

 ..., inst1,n1)
inst1,2 inst1,n1

instm,1
relm(instm,1, instm,2,

 ...,instm,nm))
instm,2 instm,nm

...
rel1

relm

General: Graph (solid+wavy) Logic

Example: Graph Logic

...

(Invest(|WB, |GE,

 US$ 3·109)

Invest(|JS, |VW,

 US$ 2·104))

Invest US$ 3·109

Invest US$ 2·104

WB GE

JS VW

40

John Latin

Paul

Mary

Hypergraph (2 hyperarcs,

 crossing

 inside a node)

John Latin

Paul

Mary Kate

to

to

From Hyperarc Crossings to Node Copies

as a Normalization Sequence (1)

Kate Teach Teach

Show Show

DLG (4 arcs, do not specify

 to whom Latin

 is shown or taught)

Symbolic Controlled English

“John shows Latin to Kate.

Mary teaches Latin to Paul.”

41

From Hyperarc Crossings to Node Copies

as a Normalization Sequence (1*)

John Latin

Show
Paul

Mary Kate

Hypergraph (2 hyperarcs,

 crossing

 outside nodes)

John Latin

Show
Paul

Mary Kate

DLG (4 arcs, do not specify

 to whom Latin

 is shown or taught)

to

to Teach Teach

42

Hypergraph (2 hyperarcs,

 parallel-cutting

 a node)

John

Latin

Kate

Mary Teach Paul

to

to

John

Latin

Kate

Mary Teach Paul

From Hyperarc Crossings to Node Copies

as a Normalization Sequence (1**)

Show
Show

DLG (4 arcs, do not specify

 to whom Latin

 is shown or taught)

The hyperarc for, e.g., ternary Show(John,Latin,Kate) can be seen as the path

composition of 2 arcs for binary Show(John,Latin) and binary to(Latin,Kate)

43

Hypergraph (2 hyperarcs,

 parallel-cutting

 a node)

John

Latin

Kate

Mary

Teach1

Paul

John

Latin

Kate

Mary Teach Paul

From Hyperarc Crossings to Node Copies

 Insert on Correct Binary Reduction

Show

Show1

DLG (8 arcs with 4 ‘reified’

 relation/ship nodes to

 point to arguments)

arg1 arg2 arg3

arg1 arg2 arg3

Show

Teach

http://lists.w3.org/Archives/Public/www-rdf-logic/2000Sep/0003.html

44

Hypergraph (2 hyperarcs,

 employing

 a node copy)

Logic (2 relations,

 employing

 a symbol copy)

John Latin Show(John, Latin, Kate)

Teach(Mary, Latin, Paul)

Kate

Mary Latin Paul

From Hyperarc Crossings to Node Copies

as a Normalization Sequence (1***)

Teach

Show

Both ‘Latin’ occurrences remain one node even when copied for easier layout:

Having a unique name, ‘Latin’ copies can be merged again

45

From Predicate Labels on Hyperarcs

to Labelnodes Starting Hyperarcs

inst1

General: Graph (hyperarc with Logic

 rect4vex-shaped

 labelnode)

Example: Graph Logic

(n=3)

rel(inst1, inst2, ...,

 instn-1, instn)

inst2

rel

Invest(|WB,

 |GE,

 US$ 3·109)

instn instn-1

rel inst1 inst2 instn instn-1

US$ 3·109

Invest
US$ 3·109

WB GE

WB GE

Invest

(Shorthand)

(Normal Form)

59

Predicates: Unary Relations

(Classes, Concepts, Types)

inst1

Example: Graph Logic

 class(inst1)
class

Warren Buffett

Billionaire
 Billionaire(

 Warren Buffett)

General: Graph (class applied Logic
 to instance node)

HasInstance

61

Graphical Elements: Arrows (2)

• Arrows for special arcs and hyperarcs

– HasInstance: Connects class, as labelnode,

with instance (hyperarc of length 1)

• As in DRLHs and shown earlier, labelnodes can also

be used (instead of labels) for hyperarcs of length > 1

– SubClassOf: Connects subclass, unlabeled,

with superclass (arc, i.e. of length 2)

– Implies: Hyperarc from premise(s) to conclusion

– Object-IDentified slots and shelves: Bulleted

arcs and hyperarcs

http://www.dfki.uni-kl.de/~boley/drlhops.abs.html

62

Class Hierarchies (Taxonomies):

Subclass Relation

General: Graph (two nodes) (Description)

 Logic

Example: Graph (Description)

 Logic

 class1 class2

class2

Rich

 Billionaire Rich

class1

SubClassOf

Billionaire

64

General: Graph (solid+linear node, (Description)

 as for conjunction) Logic

Example: Graph (Description)

 Logic

 class1

 class2

 classn

. . .

 Billionaire
 Benefactor
 Environmentalist

Intensional-Class Constructions (Ontologies):

Class Intersection

class2 class1 classn . . .

Billionaire Benefactor Environmentalist

65

General: Graph (complex class (xNS-Description)

 applied to instance node) Logic

Example: Graph (xNS-Description)

 Logic

 (Billionaire
 Benefactor
 Environmentalist)
 (Warren Buffett)

Intensional-Class Applications:

Class Intersection

Warren Buffett

 (class1

 class2

 classn)
 (inst1)

. . .

inst1

class2 class1 classn . . .

Billionaire Benefactor Environmentalist

66

General: Graph (solid+wavy node, (Description)

 as for disjunction) Logic

Example: Graph (Description)

 Logic

. . .

 Billionaire
 Benefactor
 Environmentalist

Intensional-Class Constructions (Ontologies):

Class Union

 class1

 class2

 classn

class2 class1 classn . . .

Billionaire Benefactor Environmentalist

67

General: Graph (complex class (xNS-Description)

 applied to instance node) Logic

Example: Graph (xNS-Description)

 Logic

Intensional-Class Applications:

Class Union

Warren Buffett

inst1

 (class1

 class2

 classn)
 (inst1)

. . .

 (Billionaire
 Benefactor
 Environmentalist)
 (Warren Buffett)

class2 class1 classn . . .

Billionaire Benefactor Environmentalist

69

Class Hierarchies (Taxonomy DAGs):

Top and Bottom

General: Top (special node) (Description)

 Logic

General: Bottom (special node) (Description)

 Logic

 ┬

 (owl:Thing)

 ┴

 (owl:Nothing)

┴

┬

71

Intensional Class Constructions (Ontologies):

 Class-Property RestrictionExistential (1*)

General: Graph (normal) (Description)

 Logic

Example: Graph (Description)

 Logic

 binrel . class

 Substance . Physical

binrel
┬ class

 Substance
Physical ┬

A kind of schema, where Top class is specialized to have (multi-valued)

attribute/property, Substance, with at least one value typed by class Physical

73

Instance Assertions (Populated Ontologies):

 Using Restriction for ABoxExistential (1*)

General: Graph (normal) (xNS-Description)
 Logic

Example: Graph (xNS-Description)
 Logic

 binrel.class(inst0)
binrel

 Substance.Physical

 (Socrates)
 Physical(P1)
 Substance(Socrates, P1)

Socrates P1
Substance

inst0

binrel
 binrel(inst0, inst1)

 class(inst1)

inst1

 Substance

┬ class

Physical ┬

75

Intensional Class Constructions (Ontologies):
Class-Property RestrictionUniversal (1*)

General: Graph (normal) (Description)

 Logic

Example: Graph (Description)

 Logic

 binrel . class
binrel

 Substance . Physical

 Substance

┬ class

Physical ┬

A kind of schema, where Top class is specialized to have (multi-valued)

attribute/property, Substance, with each value typed by class Physical

77

Instance Assertions (Populated Ontologies):

 Using Restriction for ABoxUniversal (1*)

General: Graph (normal) (xNS-Description)
 Logic

Example: Graph (xNS-Description)
 Logic

 binrel.class(inst0)

 Substance.Physical
 (Socrates)
 Physical(P1)
 Physical(P2)
 Substance(Socrates, P1)
 Substance(Socrates, P2)

P1
Substance

inst0
inst1

instn

binrel

binrel

. . .

. . . binrel(inst0, inst1)

 binrel(inst0, instn)

 class(inst1)

 class(instn)
. . .

. . .

Substance

Socrates

binrel
┬ class

P2

Substance

 Substance
Physical ┬

78

Existential vs. Universal Restriction
(Physical/Mental Assumed Disjoint: Can Be Explicated via Bottom Intersection)

Example: Graph (xNS-Description)
 Logic

 Substance.Physical
 (Socrates)
 Physical(P1)
 Mental(P3)
 Substance(Socrates, P1)
 Substance(Socrates, P3)

 Substance

P1
P3

Substance

Substance

Socrates

Example: Graph (xNS-Description)
 Logic

 Substance.Physical
 (Socrates)
 Physical(P1)
 Mental(P3)
 Substance(Socrates, P1)
 Substance(Socrates, P3)

 Substance

P1
P3

Substance

Substance

Socrates

C

o

n

s

i

s

t

e

n

t

I

n

c

o

n

s

i

s

t

e

n

t

┬ Physical

Mental

┬ Physical

Mental

79

LuckyParent Example (1)

Poor

Doctor

 Child Child

 Spouse

LuckyParent

EquivalentClasses

Person

LuckyParent ≡ Person Spouse.Person Child.(Poor Child.Doctor)

┬

80

LuckyParent Example (1*)

 Child Child

 Spouse

LuckyParent LuckyParent ≡ Person Spouse.Person Child.(Poor Child.Doctor)

┬

 Spouse

:

Poor

Doctor

Person

Person

81

LuckyParent Example (1**)

 Child

LuckyParent LuckyParent ≡ Person Spouse.Person Child.(Poor Child.Doctor)

┬

:

┬

┬ Child

 Spouse

Person

Person

Poor

Doctor

82

LuckyParent Example (1**)

 Child

LuckyParent LuckyParent ≡ Person Spouse.Person Child.(Poor Child.Doctor)

┬

:

┬

┬ Child

 Spouse

Doctor

Poor

Person

Person

83

Object-Centered Logic:

Grouping Binary Relations Around Instance

General: Graph (Object-Centered)
 (inst0-centered) Logic

Example: Graph (Object-Centered)
 (Socrates-centered) Logic

 Philosopher(Socrates)
 Substance(Socrates, P1)
 Teaching(Socrates, T1) P1

T1

Substance

inst0

inst1

instn

binrel1

binreln

. . .

 binrel1(inst0, inst1)

 binreln(inst0, instn)

 class(inst0)

. . .

Teaching

Philosopher

Socrates

class

84

RDF-Triple (‘Subject’-Centered) Logic:

Grouping Properties Around Instance

 {(Socrates, rdf:type, Philosopher),

 (Socrates, Substance, P1),

 (Socrates, Teaching, T1)}
P1

T1

Substance

inst0 instn

property1

propertyn

. . .

 (inst0, property1, inst1),

 (inst0, propertyn, instn)}

 {(inst0, rdf:type, class),

. . .

Teaching

Socrates

General: Graph (Subject-Centered)
 (inst0-centered) Logic

Example: Graph (Subject-Centered)
 (Socrates-centered) Logic

inst1

class

Philosopher

85

Logic of Frames (‘Records’): Associating

Slots with OID-Distinguished Instance

General: Graph (PSOA Frame)
 (bulleted arcs) Logic

Example: Graph (PSOA Frame)
 Logic

 Socrates#Philosopher(
 Substance->P1;
 Teaching->T1) P1

T1

Substance

inst0 instn

slot1

slotn

. . .

 slot1->inst1;

 slotn->instn)

 inst0#class(

 . . .

Teaching

Socrates

inst0 class,

 slot1 = inst1,

 . . .

 slotn = instn

inst1

class

Philosopher

86

Logic of Shelves (‘Arrays’): Associating

Tuple(s) with OID-Distinguished Instance

General: Graph (PSOA Shelf)
 (bulleted hyperarc) Logic

Example: Graph (PSOA Shelf)
 Logic

 Socrates#Philosopher(
 c. 469 BC, 399 BC)

399 BC

inst0

 inst’1, …, inst’m)

 inst0#class(

Socrates

inst’1

inst’m . . .

c. 469 BC

class

Philosopher

87

Positional-Slotted-Term Logic: Associating

 Tuple(s)+Slots with OID-Disting’ed Instance

General: Graph (PSOA Positional-
 Slotted-Term) Logic

Example: Graph (PSOA Positional-
 Slotted-Term) Logic

 Socrates#Philosopher(
 c. 469 BC, 399 BC;
 Substance->P1;
 Teaching->T1)

399 BC

Substance

inst0 instn

slot1

slotn

. . .

 inst’1, …, inst’m;
 slot1->inst1;

 slotn->instn)

 inst0#class(

 . . .

Teaching

Socrates

inst’1

inst’m . . .

c. 469 BC

P1

T1

inst1

class

Philosopher

89

inst1,1

rel1(inst1,1, inst1,2,

 ..., inst1,n1)
inst1,2 inst1,n1

inst2,1
rel2(inst2,1, inst2,2,

 ...,inst2,n2)
inst2,2 inst2,n2

rel1

rel2

General: Graph (ground, Logic
 shorthand)

Example: Graph Logic

Invest Invest(|WB, |GE,

 US$ 3·109)
US$ 3·109

Invest
Invest(|JS, |VW,

 US$ 5·103)
US$ 5·103

Rules: Relations Imply Relations (1)

WB GE

JS VW

92

Rules: Relations Imply Relations (3)
General: Graph (inst/var terms) Logic

Example: Graph Logic

(Y, A)

Invest(|WB, Y, A)

term1,1 term1,2 term1,n1

term2,1
 rel2(term2,1, term2,2,

 ..., term2,n2)
term2,2 term2,n2 rel2

rel1 (vari,j)

 rel1(term1,1, term1,2,

 ..., term1,n1)

Invest

Invest US$ 5·103 Invest(|JS, Y,

 US$ 5·103)

WB

JS

Y A

Y

94 Rules: Conjuncts Imply Relations (1*)
General: Graph (prenormal) Logic

Example: Graph Logic

(Y, A)

Invest(|WB, Y, A)

Trust(|JS, Y)

term1,1 term1,2 term1,n1

term2,1 rel2(term2,1, term2,2,

 ..., term2,n2)

term2,2 term2,n2 rel2

rel1

(vari,j)
 rel1(term1,1, term1,2,

 ..., term1,n1)

Invest

Invest US$ 5·103
Invest(|JS, Y,

 US$ 5·103)

term3,1 term3,2 term3,n3 rel3 rel3(term3,1, term3,2,
 ..., term3,n3)

Trust

WB

JS

JS

Y A

Y

Y

96

<Implies closure="universal">

 <And>

 <Atom>

 <Rel>Invest</Rel>

 <Ind unique="no">WB</Ind>

 <Var>Y</Var>

 <Var>A</Var>

 </Atom>

 <Atom>

 <Rel>Trust</Rel>

 <Ind unique="no">JS</Ind>

 <Var>Y</Var>

 </Atom>

 </And>

 <Atom>

 <Rel>Invest</Rel>

 <Ind unique="no">JS</Ind>

 <Var>Y</Var>

 <Data>US$ 5·103</Data> <!– superscript “3” to be parsed as Unicode U+00B3 -->

 </Atom>

</Implies>

Example: RuleML/XML Logic

Rules: Conjuncts Imply Relations (2)

(Y, A)

(Invest(|WB, Y, A)

 Trust(|JS, Y)
 Invest(|JS, Y,

 US$ 5·103))

Proposing an attribute unique

with value "no" for NNS,

and "yes" for UNS as the default

Positional-Slotted-Term Logic: Rule-defined

Anonymous Family Frame (Visualized from IJCAI-2011 Presentation)

Example: Graph (PSOA Positional-
 Slotted-Term) Logic

 Group (

 Forall ?Hu ?Wi ?Ch (

 ?1#family(husb->?Hu

 wife->?Wi

 child->?Ch) :-

 And(married(?Hu ?Wi)

 Or(kid(?Hu ?Ch)

 kid(?Wi ?Ch))))

 married(Joe Sue)

 kid(Sue Pete)

)

husb
wife

family

?1

?Hu

?Wi
child

?Ch

married ?Hu ?Wi

kid ?Hu ?Ch

kid ?Ch ?Wi

Joe Sue

kid Sue Pete

married

101

http://www.cs.unb.ca/~boley/talks/SemanticsPsoaRules-talk-IJCAI2011.pdf
http://www.cs.unb.ca/~boley/talks/SemanticsPsoaRules-talk-IJCAI2011.pdf
http://www.cs.unb.ca/~boley/talks/SemanticsPsoaRules-talk-IJCAI2011.pdf

Positional-Slotted-Term Logic: Ground Facts,

incl. Deduced Frame, Model Family Semantics

Example: Graph (PSOA Positional-
 Slotted-Term) Logic

 Group (

 o#family(husb->Joe

 wife->Sue

 child->Pete)

 married(Joe Sue)

 kid(Sue Pete)

)

husb

family

child

Joe Sue

kid Sue Pete

married

Joe Sue
Pete

wife
o

Previous slide’s

existential variable ?1

in rule head becomes

new OID constant o

in frame fact, deduced

from relational facts

For reference implementation of PSOA querying see PSOATransRun

102

http://wiki.ruleml.org/index.php/PSOA_RuleML

Positional-Slotted-Term Logic: Conversely,

Given Facts, Rule Can Be Inductively Learned

Example: Graph

husb

family

child

M1 W1

kid M1 C1

married

M1 W1
C1

wife
o1

kid W1 C1

husb

family

child

Mn
Wn

Cz
wife

on

Mn Wn married

kid Mn Cx kid Wn Cy

Abstracting OID

constants o1, ... , on

to regain existential

variable ?1 of previous rule,

now induced from matching

relational and frame facts

103

108

Orthogonal Graphical Features
 Axes of Grailog Systematics

• Box axes:
• Corners: pointed vs. snipped vs. rounded

• To quote/copy vs. reify/instantiate vs. evaluate contents
(cf. Lisp, Prolog, Relfun, Hilog, RIF, and IKL)

• Shapes (rectangle-derived): composed from
sides that are straight vs. concave vs. convex
• For neutral vs. function vs. relation contents

• Contents: elementary vs. complex nodes

• Arrow axes:
• Shafts: single vs. double
• Heads: triangular vs. diamond
• Tails: plain vs. bulleted vs. colonized

• Box & Arrow (line-style) axes:
solid vs. dashed, linear vs. (box only) wavy

http://en.wikipedia.org/wiki/Lisp_(programming_language)
http://en.wikipedia.org/wiki/Prolog
http://www.relfun.org/
http://www.cs.sunysb.edu/~warren/xsbbook/node45.html
http://www.w3.org/2005/rules/wiki/RIF_Working_Group
http://www.ihmc.us/users/phayes/IKL/GUIDE/GUIDE.html

109

Graphical Elements: Box Systematics
 Axes of Corners and Shapes

Per … Copy … Instantiation … Value

Rect- Snip- Round-

Neutral

-angle

Individual
(Function Application)

-2cave

Function

-4cave

Proposition
(Relation Application)

-2vex

Relation
(incl. Class)

-4vex

Shape:

Corner:

110

Graphical Elements: Boxes
 Function/Relation-Neutral Shape of
Angles Varied w.r.t. Corner Dimension

– Rectangle: Neutral ‘per copy’ nodes quote their contents

– Snipangle (octagon): Neutral ‘per instantiation’ nodes

dereference contained variables to values from context

– Roundangle (rounded angles): Neutral ‘per value’ nodes

evaluate their contents through instantiation of variables

and activation of function/relation applications

2 X X=3 :

2 X X=3 : 2 3

2 X X=3 : 6
Assuming Mult

built-in function Mult

Mult

Mult 2 X Mult

Mult

111

Graphical Elements: Boxes Concave
– Rect2cave (rectangle with 2 concave - top/bottom - sides):

Elementary nodes for individuals (instances).

Complex nodes for quoted instance-denoting terms

(constructor-function applications)

– Snip2cave (snipped): Elementary nodes for variables.

Complex nodes for instantiated (reified)

function applications

– Round2cave (rounded): Complex nodes for evaluated

built-in or equation-defined function applications

– Rect4cave (4 concave sides): Elementary nodes for fct’s.

Complex nodes for quoted functional (function-denoting) terms

– Snip4cave: Complex nodes for instantiated funct’l terms

– Round4cave: Complex nodes for evaluated functional

applications (active, function-returning applications)

112

Graphical Elements: Boxes Convex
– Rect2vex (rectangle with 2 convex - top/bottom - sides):

Elementary nodes for truth constants (true, false, unknown).

Complex nodes for quoted truth-denoting propositions

(embedded relation applications)

– Snip2vex: Complex nodes for instantiated (reified)

relation applications

– Round2vex: Complex nodes for evaluated

relation applications (e.g. as atomic formulas) and for

connective uses

– Rect4vex: Elementary nodes for relations, e.g. unary

ones (classes). Complex nodes for quoted relational

(relation-denoting) terms

– Snip4vex: Complex nodes for instantiated relat’l terms

– Round4vex (oval): Complex nodes for evaluated relat’l

applications (active, relation-returning applications)

113

Conclusions (1)
• Grailog 1.0 incorporates feedback on earlier versions

• Graphical elements for novel box & arrow systematics
using orthogonal graphical features
– Leaving color (except for IRIs) for other purposes, e.g.

highlighting subgraphs (for retrieval and inference)

• Introducing Unique vs. Non-unique Name Specification

• Focus on mapping to a family of logics as in RuleML

• Use cases from cognition to technology to business
– E.g. “Logical Foundations of Cognitive Science”:

http://www.ict.tuwien.ac.at/lva/Boley_LFCS/index.html

• Processing of earlier Grailog-like DRLHs studied in
Lisp, FIT, and Relfun

• For Grailog, aligned with Web-rule standard RuleML:
http://wiki.ruleml.org/index.php/Grailog

http://www.ict.tuwien.ac.at/lva/Boley_LFCS/index.html
http://wiki.ruleml.org/index.php/Grailog

114

Conclusions (2)
• Symbolic-to-visual mappings implemented as

Semantic Web Techniques Fall 2012 Projects:
– Team 1 A Grailog Visualizer for Datalog RuleML via XSLT

2.0 Translation to SVG by Sven Schmidt and Martin Koch:
An Int'l Rule Challenge 2013 paper & demo introduced Grailog KS Viz

– Team 8 Visualizing SWRL’s Unary/Binary Datalog RuleML

in Grailog by Bo Yan, Junyan Zhang, and Ismail Akbari:
A Canadian Semantic Web Symposium 2013 paper gave an overview

• Grailog invites feature choice or combination

– E.g. n-ary hyperarcs or n-slot frames or both

• Grailog Initiative on open standardization

calls for further feedback for future 1.x versions

http://www.cs.unb.ca/~boley/cs6795swt/syllabus.html
http://www.cs.unb.ca/~boley/cs6795swt/fall2012projects.html
http://www.cs.unb.ca/~boley/cs6795swt/Fall2012_Team1.pdf
http://people.unb.ca/~sschmidt/cs6795swt/index.html
http://people.unb.ca/~sschmidt/cs6795swt/index.html
http://2013.ruleml.org/
http://www.cs.unb.ca/~boley/papers/GrailogKSViz.pdf
http://www.cs.unb.ca/~boley/cs6795swt/Fall2012_Team8.pdf
http://2012team8project.weebly.com/index.html
http://2012team8project.weebly.com/index.html
http://www.unbsj.ca/sase/csas/data/ws/csws2013/
http://www.cs.unb.ca/~boley/papers/SWRLRulesPSOAGrailog.pdf

115

Future Work (1)
• Refine/extend Grailog, e.g. along with API4KB effort

– Compare with other graph formalisms, e.g. Conceptual
Graphs (http://conceptualstructures.org) and CoGui tool

– Define mappings to/fro UML structure diagrams + OCL,
adopting UML behavior diagrams (http://www.uml.org)

• Implement further tools, e.g. as use case for
(Functional) RuleML (http://ruleml.org/fun) engines
– More mappings between graphs, logic, and RuleML/XML:

Grailog generators: Further symbolic-to-visual mappings
Grailog parsers: Initial visual-to-symbolic mappings

– Graph indexing & querying (cf. http://www.hypergraphdb.org)

– Graph transformations (normal form, typing homomorphism, merge, ...)

– Advanced graph-theoretical operations (e.g., path tracing)

– Exploit Grailog parallelism in implementation

http://www.omgwiki.org/API4KB/doku.php
http://conceptualstructures.org/
http://www2.lirmm.fr/cogui/
http://www.uml.org/
http://ruleml.org/fun
http://www.hypergraphdb.org/
http://dpf.hib.no/wp-content/uploads/unb_pres.pdf

116

Future Work (2)
• Develop a Grailog structure editor, e.g. supporting:

– Auto-specialize of neutral application boxes (angles) to
function apps (2caves) or relation apps (2vexes), depending on contents

– Auto-specialize of neutral operator boxes (angles) to
functions (4caves) or relations (4vexes), depending on context

• Benefit from, and contribute to, Protégé visualization
plug-ins such as Jambalaya/OntoGraf and OWLViz
for OWL ontologies and Axiomé for SWRL rules

• Proceed from the 2-dimensional (planar) Grailog to a
3-dimensional (spatial) one
– Utilize advantages of crossing-free layout, spatial shortcuts,

and analogical representation of 3D worlds

– Mitigate disadvantages of occlusion and
of harder spatial orientation and navigation

• Consider the 4th (temporal) dimension of animations
to visualize logical inferences, graph processing, etc.

http://www.thechiselgroup.org/jambalaya
http://protegewiki.stanford.edu/wiki/OntoGraf
http://protegewiki.stanford.edu/wiki/OWLViz
http://protegewiki.stanford.edu/wiki/Axiom%C3%A9

