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Visualization of Data  
• Useful in many areas, needed for big data 

• Gain knowledge insights from data analytics, 
ideally with the entire pipeline visualized 

• Statistical visualization  Logical visualization  

 
Sample data 

visualization 

(http://wordle.net): 
Word cloud 

for frequency 

of words from 

BMIR abstract 

of this talk 

http://wordle.net/
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Visualization of Data & Knowledge: 

Graphs Remove Entry Barrier to Logic 

• From 1-dimensional symbol-logic knowledge 
specification to 2-dimensional graph-logic 
visualization in a systematic 2D syntax 

– Supports  human in the loop  across knowledge 
elicitation, specification, validation, and reasoning 

• Combinable with graph transformation, 
(‘associative’) indexing & parallel processing 
for efficient implementation of specifications 

• Move towards model-theoretic semantics 

– Unique names, as graph nodes, mapped directly/ 
injectively to elements of semantic interpretation 
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Grailog 
Graph inscribed logic provides intuition for logic 

 

Advanced cognitively motivated systematic  
 

graph standard for visual-logic data & knowledge: 
 

 Features orthogonal  easy to learn, 
e.g. for (Business) Analytics 

 

Generalized-graph framework as one uniform 
 2D syntax for major (Semantic Web) logics: 

Pick subset for each targeted knowledge base, 
map to/fro RuleML sublanguage, and exchange 

& validate it, posing queries again in Grailog 

http://www.cs.unb.ca/~boley/talks/DistriSemWeb.pdf
http://www.cs.unb.ca/~boley/talks/DistriSemWeb.pdf
http://www.cs.unb.ca/~boley/talks/DistriSemWeb.pdf
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Generalized Graphs 

to Represent and Map Logic Languages 

According to Grailog 1.0 Systematics 

• We have used generalized graphs for representing 
various logic languages, where basically: 
– Graph nodes (vertices) represent individuals, classes, etc. 

– Graph arcs (edges) represent relationships 

• Next slides: 
What are the principles of this representation and 
what graph generalizations are required? 

• Later slides: 
How are these graphs mapped (invertibly) to logic, 
thus specifying Grailog as a ‘GUI’ for knowledge? 

• Final slides: 
What is the systematics of Grailog features? 
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Grailog Principles 
• Graphs should make it easier for humans to read 

and write logic constructs via 2D state-of-the-art 
representation with shorthand & normal forms, 
from Controlled English to logic 
 

• Graphs should be natural extensions (e.g. n-ary) 
of Directed Labeled Graphs (DLGs), often used 
to represent simple semantic nets, i.e. of atomic 
ground formulas in function-free dyadic predicate 
logic (cf. binary Datalog ground facts, RDF triples, 
the Open Graph, and the Knowledge Graph) 
 

• Graphs should allow stepwise refinements for all 
logic constructs: Description Logic constructors, 
F-logic frames, general PSOA RuleML terms, etc. 
 

• Extensions to boxes & links should be orthogonal 

 
 

http://en.wikipedia.org/wiki/Datalog
http://www.w3.org/TR/rdf-primer/
https://developers.facebook.com/docs/opengraph/
http://www.google.com/insidesearch/features/search/knowledge.html
http://dl.kr.org/
http://flora.sourceforge.net/tutorial.php
http://flora.sourceforge.net/tutorial.php
http://flora.sourceforge.net/tutorial.php
http://www.cs.unb.ca/~boley/talks/SemanticsPsoaRules-talk-UNB2011.pdf
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Grailog Generalizations 
 

• Directed hypergraphs: For n-ary relationships, 

directed relation-labeled (binary) arcs will be generalized 

to directed relation-labeled (n-ary) hyperarcs, e.g. 

representing relational-database tuples 
 

• Recursive (hierarchical) graphs: For nested terms 

and formulas, modal logics, and modularization, ‘flat’ 

graphs will be generalized to allow other graphs as 

complex nodes to any level of ‘depth’ 
 

• Labelnode graphs: For allowing higher-order logics 

describing both instances and relations (predicates), 

arc labels will also become usable as nodes 
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Graphical Elements: Names 

• Written into boxes (nodes): 

Unique (canonical, distinct) names 

– Unique Name Assumption (UNA) 

refined to Unique Name Specification (UNS) 
 

• Written onto boxes (node labels): 

Non-unique (alternate, ‘aka’) names 

– Non-unique Name Assumption (NNA) 

refined to Non-unique Name Specification (NNS) 
 

• Grailog combines UNS and NNS: xNS, with x = U or N 

unique 

non-unique 

  



16 

Instances: Individual Constants 

with Unique Name Specifications 

unique 

Warren Buffett 

General: Graph (node)  Logic 

US$ 3 000 000 000 

General Electric 

Examples: Graph   Logic 

unique 

Warren Buffett 

US$ 3 000 000 000 

General Electric 

mapping 
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Instances: Individual Constants 

 with Non-unique Name Specifications 

General: Graph (node)  Logic (vertical bar 
                                                        for non-uniqueness) 

           

Examples: Graph   Logic 

|non-unique 

|WB 

|US$ 3B 

|GE 

mapping 

WB 

GE 

US$ 3B 

non-unique 
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Graphical Elements: Hatching Patterns 

• No hatching (boxes): Constant 

• Hatching (elementary boxes): Variable 
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Parameters: Individual Variables 

General: Graph (hatched node) Logic (italics font, 
        POSL uses “?” prefix) 

Examples: Graph   Logic 

variable 

X 

A 

Y 

variable 

X 

Y 

A 

http://ruleml.org/
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Predicates: Binary Relations (1) 

inst1 

General: Graph (labeled arc)  Logic 

Example: Graph     Logic 

binrel(inst1, inst2) inst2 

binrel 

Warren Buffett General Electric 
Trust 

Trust(Warren Buffett, 

         General Electric 

         ) 
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Predicates: Binary Relations (2) 

General: Graph (labeled arc) Logic 

Example: Graph   Logic 

binrel(var1, var2) 
binrel 

Trust 
Trust(X,Y) X Y 

var1 var2 
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Graphical Elements: Arrows (1) 

• Labeled arrows (directed links) for arcs and 

hyperarcs (where hyperarcs ‘cut through’ nodes 

intermediate between first and last) 
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Predicates: n-ary Relations (n>1) 

inst1 

General: Graph (hyperarc)      Logic 

Example: Graph       Logic 

(n=3) 

rel(inst1, inst2, ..., 

     instn-1, instn) 
inst2 

rel 

Invest Invest(|WB, 

           |GE, 

           US$ 3·109) 

instn instn-1 

US$ 3·109 

WB GE 
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Implicit Conjunction of Formula Graphs: 

Co-Occurrence on Graph Top-Level 

inst1,1 

rel1(inst1,1, inst1,2, 

       ..., inst1,n1)    
inst1,2 inst1,n1 

instm,1 
relm(instm,1, instm,2, 

       ...,instm,nm) 
instm,2 instm,nm 

... 
rel1 

relm 

General: Graph (m hyperarcs)     Logic 

Example: Graph (2 hyperarcs)     Logic 

...         

Invest(|WB, |GE, 

       US$ 3·109)   

Invest(|JS, |VW, 

       US$ 2·104) 

Invest US$ 3·109 

Invest US$ 2·104 

WB GE 

JS VW 



34 Explicit Conjunction of Formula Graphs:  

 Co-Occurrence in (parallel-processing) And Node 

inst1,1 

(rel1(inst1,1, inst1,2, 

       ..., inst1,n1)    
inst1,2 inst1,n1 

instm,1 
relm(instm,1, instm,2, 

       ...,instm,nm)) 
instm,2 instm,nm 

... 
rel1 

relm 

General: Graph (solid+linear)     Logic 

Example: Graph       Logic 

...         

Invest 
(Invest(|WB, |GE, 

       US$ 3·109)   
US$ 3·109 

Invest 
Invest(|JS, |VW, 

       US$ 2·104)) 
US$ 2·104 

WB GE 

JS VW 



37 Disjunction of Formula Graphs:  

 Co-Occurrence in Or Node 

inst1,1 

(rel1(inst1,1, inst1,2, 

       ..., inst1,n1)    
inst1,2 inst1,n1 

instm,1 
relm(instm,1, instm,2, 

       ...,instm,nm) ) 
instm,2 instm,nm 

... 
rel1 

relm 

General:  Graph (solid+wavy)        Logic 

Example: Graph               Logic 

...         

(Invest(|WB, |GE, 

       US$ 3·109)   

Invest(|JS, |VW, 

       US$ 2·104)) 

Invest US$ 3·109 

Invest US$ 2·104 

WB GE 

JS VW 
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John Latin 
 

 

 

Paul 

Mary 

Hypergraph (2 hyperarcs, 

    crossing 

    inside a node) 

John Latin 
 

 

 

Paul 

Mary Kate 

to 

to 

From Hyperarc Crossings to Node Copies 

as a Normalization Sequence (1)  

Kate Teach Teach 

Show Show 

DLG (4 arcs, do not specify  

 to whom Latin  

 is shown or taught) 

Symbolic Controlled English 
 

“John shows Latin to Kate. 

Mary teaches Latin to Paul.”  
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From Hyperarc Crossings to Node Copies 

as a Normalization Sequence (1*)  

John Latin 
 

 

 

Show 
Paul 

Mary Kate 

Hypergraph (2 hyperarcs, 

    crossing 

    outside nodes) 

John Latin 
 

 

 

Show 
Paul 

Mary Kate 

DLG (4 arcs, do not specify  

 to whom Latin  

 is shown or taught) 

to 

to Teach Teach 
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Hypergraph (2 hyperarcs, 

    parallel-cutting 

    a node) 

John  

Latin 
 

 

Kate 

Mary Teach Paul 

to 

to 

John  

Latin 
 

 

Kate 

Mary Teach Paul 

From Hyperarc Crossings to Node Copies 

as a Normalization Sequence (1**)  

Show 
Show 

DLG (4 arcs, do not specify  

 to whom Latin  

 is shown or taught) 

The hyperarc for, e.g., ternary Show(John,Latin,Kate) can be seen as the path 

composition of 2 arcs for binary Show(John,Latin) and binary to(Latin,Kate) 



43 

Hypergraph (2 hyperarcs, 

    parallel-cutting 

    a node) 

John  

Latin 
 

 

Kate 

Mary 

Teach1 

Paul 

John  

Latin 
 

 

Kate 

Mary Teach Paul 

From Hyperarc Crossings to Node Copies 

 Insert on Correct Binary Reduction 

Show 

Show1 

DLG (8 arcs with 4 ‘reified’ 

 relation/ship nodes to  

 point to arguments) 

arg1 arg2 arg3 

arg1 arg2 arg3 

Show 

Teach 

http://lists.w3.org/Archives/Public/www-rdf-logic/2000Sep/0003.html
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Hypergraph (2 hyperarcs, 

    employing 

    a node copy) 

Logic (2 relations, 

   employing 

   a symbol copy) 

John Latin Show(John, Latin, Kate) 

     

Teach(Mary, Latin, Paul) 

Kate 

Mary Latin Paul 

From Hyperarc Crossings to Node Copies 

as a Normalization Sequence (1***)  

Teach 

Show 

Both ‘Latin’ occurrences remain one node even when copied for easier layout: 

Having a unique name, ‘Latin’ copies can be merged again 
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From Predicate Labels on Hyperarcs 

to Labelnodes Starting Hyperarcs  

inst1 

General: Graph (hyperarc with     Logic 

      rect4vex-shaped 

      labelnode) 

Example: Graph       Logic 

(n=3) 

rel(inst1, inst2, ..., 

     instn-1, instn) 

inst2 

rel 

Invest(|WB, 

           |GE, 

           US$ 3·109) 

instn instn-1 

rel inst1 inst2 instn instn-1 

US$ 3·109 

Invest 
US$ 3·109 

WB GE 

WB GE 

Invest 

(Shorthand) 

(Normal Form) 
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Predicates: Unary Relations 

(Classes, Concepts, Types) 

inst1 

Example: Graph    Logic 

 class(inst1) 
class 

Warren Buffett 

Billionaire 
 Billionaire( 

   Warren Buffett) 

General: Graph (class applied  Logic 
  to instance node) 

HasInstance 
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Graphical Elements: Arrows (2) 

• Arrows for special arcs and hyperarcs  

– HasInstance: Connects class, as labelnode, 

with instance (hyperarc of length 1) 

• As in DRLHs and shown earlier, labelnodes can also 

be used (instead of labels) for hyperarcs of length > 1 

– SubClassOf: Connects subclass, unlabeled, 

with superclass (arc, i.e. of length 2) 

– Implies: Hyperarc from premise(s) to conclusion 

– Object-IDentified slots and shelves: Bulleted 

arcs and hyperarcs  

 

 

http://www.dfki.uni-kl.de/~boley/drlhops.abs.html
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Class Hierarchies (Taxonomies): 

Subclass Relation 

General: Graph (two nodes)  (Description) 

       Logic 

Example: Graph    (Description) 

       Logic 

 class1    class2 

class2 

Rich 

 Billionaire    Rich 

class1 

SubClassOf 

Billionaire 



64 

General: Graph (solid+linear node, (Description) 

  as for conjunction)  Logic 

Example: Graph    (Description) 

       Logic 

 class1 

 class2 
 
 classn 
 

. . . 

 Billionaire  
  Benefactor 
 Environmentalist 

Intensional-Class Constructions (Ontologies): 

Class Intersection 

class2 class1 classn . . . 

Billionaire Benefactor  Environmentalist 
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General: Graph (complex class         (xNS-Description) 

  applied to instance node)     Logic 

Example: Graph           (xNS-Description) 

              Logic 

 (Billionaire  
    Benefactor 
   Environmentalist) 
                (Warren Buffett) 

Intensional-Class Applications: 

Class Intersection 

Warren Buffett 

 (class1 

   class2 
 
   classn) 
                     (inst1) 
 

. . . 

inst1 

class2 class1 classn . . . 

Billionaire Benefactor  Environmentalist 
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General: Graph (solid+wavy node, (Description) 

  as for disjunction)   Logic 

Example: Graph    (Description) 

       Logic 

. . . 

 Billionaire  
  Benefactor 
 Environmentalist 

Intensional-Class Constructions (Ontologies): 

Class Union 

 class1 

 class2 
 
 classn 
 

class2 class1 classn . . . 

Billionaire Benefactor  Environmentalist 
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General: Graph (complex class         (xNS-Description) 

  applied to instance node)     Logic 

Example: Graph           (xNS-Description) 

              Logic 

Intensional-Class Applications: 

Class Union 

Warren Buffett 

inst1 

 (class1 

   class2 
 
   classn) 
                     (inst1) 
 

. . . 

 (Billionaire  
    Benefactor 
   Environmentalist) 
                (Warren Buffett) 

class2 class1 classn . . . 

Billionaire Benefactor  Environmentalist 
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Class Hierarchies (Taxonomy DAGs): 

Top and Bottom  

General:  Top (special node)  (Description) 

       Logic 

General:  Bottom (special node)  (Description) 

       Logic 

 ┬ 
 
 (owl:Thing) 
 

 ┴ 
 
 (owl:Nothing) 

┴ 

┬ 
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Intensional Class Constructions (Ontologies): 

 Class-Property RestrictionExistential (1*) 

General: Graph (normal)        (Description) 

            Logic 

Example: Graph         (Description) 

            Logic 

 binrel . class 

 Substance . Physical 
 

binrel 
┬ class 

 Substance 
Physical ┬ 

A kind of schema, where Top class is specialized to have (multi-valued) 

attribute/property, Substance, with at least one value typed by class Physical 
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Instance Assertions (Populated Ontologies): 

 Using Restriction for ABoxExistential (1*) 

General: Graph (normal)   (xNS-Description) 
       Logic 

Example: Graph     (xNS-Description) 
        Logic 

 binrel.class(inst0)  
binrel 

 Substance.Physical 

                             (Socrates)  
 Physical(P1)  
 Substance(Socrates, P1) 

Socrates P1 
Substance 

inst0 

binrel 
 binrel(inst0, inst1) 

 class(inst1)  

inst1 

 Substance 

┬ class 

Physical ┬ 
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Intensional Class Constructions (Ontologies): 
Class-Property RestrictionUniversal (1*) 

General: Graph (normal)        (Description) 

            Logic 

Example: Graph         (Description) 

            Logic 

 binrel . class 
binrel 

 Substance . Physical 
 

 Substance 

┬ class 

Physical ┬ 

A kind of schema, where Top class is specialized to have (multi-valued) 

attribute/property, Substance, with each value typed by class Physical 
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Instance Assertions (Populated Ontologies): 

 Using Restriction for ABoxUniversal (1*) 

General: Graph (normal)        (xNS-Description) 
            Logic 

Example: Graph          (xNS-Description) 
             Logic 

 binrel.class(inst0)  

 Substance.Physical 
                               (Socrates)  
 Physical(P1)  
 Physical(P2)  
 Substance(Socrates, P1)  
 Substance(Socrates, P2) 

P1 
Substance 

inst0 
inst1 

instn 

binrel 

binrel 

. . . 

. . .  binrel(inst0, inst1)  

 binrel(inst0, instn) 

 class(inst1)  

 class(instn)  
. . . 

. . . 

Substance 

Socrates 

binrel 
┬ class 

P2 

Substance 

 Substance 
Physical ┬ 
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Existential vs. Universal Restriction 
(Physical/Mental Assumed Disjoint: Can Be Explicated via Bottom Intersection) 

Example: Graph          (xNS-Description) 
             Logic 

 Substance.Physical 
                               (Socrates)  
 Physical(P1)  
 Mental(P3)  
 Substance(Socrates, P1)  
 Substance(Socrates, P3) 

 Substance 

P1 
P3 

Substance 

Substance 

Socrates 

Example: Graph          (xNS-Description) 
             Logic 

  Substance.Physical 
                               (Socrates)  
 Physical(P1)  
 Mental(P3)  
 Substance(Socrates, P1)  
 Substance(Socrates, P3) 

 Substance 

P1 
P3 

Substance 

Substance 

Socrates 

C

o

n

s

i

s

t

e

n

t 

I

n

c

o

n

s

i

s

t

e

n

t 

┬ Physical 

Mental 

┬ Physical 

Mental 
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LuckyParent Example (1) 

Poor 

Doctor 

 Child  Child 

 Spouse 

LuckyParent 

EquivalentClasses 

Person 

LuckyParent ≡ Person   Spouse.Person   Child.(Poor    Child.Doctor) 

┬ 
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LuckyParent Example (1*) 

 Child  Child 

 Spouse 

LuckyParent LuckyParent ≡ Person   Spouse.Person   Child.(Poor    Child.Doctor) 

┬ 

 Spouse 

: 

Poor 

Doctor 

Person 

Person 
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LuckyParent Example (1**) 

 Child 

LuckyParent LuckyParent ≡ Person   Spouse.Person   Child.(Poor    Child.Doctor) 

┬ 

: 

┬ 

┬  Child 

 Spouse 

Person 

Person 

Poor 

Doctor 
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LuckyParent Example (1**) 

 Child 

LuckyParent LuckyParent ≡ Person   Spouse.Person   Child.(Poor    Child.Doctor) 

┬ 

: 

┬ 

┬  Child 

 Spouse 

Doctor 

Poor 

Person 

Person 
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Object-Centered Logic: 

Grouping Binary Relations Around Instance 

General: Graph         (Object-Centered) 
  (inst0-centered)        Logic 

Example: Graph          (Object-Centered) 
  (Socrates-centered)    Logic 

 Philosopher(Socrates)  
 Substance(Socrates, P1)  
 Teaching(Socrates, T1) P1 

T1 

Substance 

inst0 

inst1 

instn 

binrel1 

binreln 

. . . 

 binrel1(inst0, inst1)  

 binreln(inst0, instn) 

 class(inst0)  

. . . 

Teaching 

Philosopher 

Socrates 

class 
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RDF-Triple (‘Subject’-Centered) Logic: 

Grouping Properties Around Instance 

 {(Socrates, rdf:type, Philosopher), 

  (Socrates, Substance, P1), 

  (Socrates, Teaching, T1)} 
P1 

T1 

Substance 

inst0 instn 

property1 

propertyn 

. . . 

  (inst0, property1, inst1), 

  (inst0, propertyn, instn)} 

 {(inst0, rdf:type, class), 

. . . 

Teaching 

Socrates 

General: Graph         (Subject-Centered) 
  (inst0-centered)        Logic 

Example: Graph          (Subject-Centered) 
  (Socrates-centered)    Logic 

inst1 

class 

Philosopher 
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Logic of Frames (‘Records’): Associating 

Slots with OID-Distinguished Instance 

General: Graph         (PSOA Frame) 
  (bulleted arcs)        Logic 

Example: Graph          (PSOA Frame) 
             Logic 

 Socrates#Philosopher( 
   Substance->P1; 
   Teaching->T1) P1 

T1 

Substance 

inst0 instn 

slot1 

slotn 

. . . 

   slot1->inst1; 

   slotn->instn) 

 inst0#class( 

   . . . 

Teaching 

Socrates 

inst0  class, 

  slot1 = inst1, 

  . . . 

  slotn = instn 

inst1 

class 

Philosopher 
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Logic of Shelves (‘Arrays’): Associating 

Tuple(s) with OID-Distinguished Instance 

General: Graph         (PSOA Shelf) 
  (bulleted hyperarc)     Logic 

Example: Graph          (PSOA Shelf) 
             Logic 

 Socrates#Philosopher( 
   c. 469 BC, 399 BC) 

399 BC 

inst0 

   inst’1, …, inst’m) 

 inst0#class( 

Socrates 

inst’1 

inst’m . . . 

c. 469 BC 

class 

Philosopher 



87 

Positional-Slotted-Term Logic: Associating  

 Tuple(s)+Slots with OID-Disting’ed Instance 

General: Graph         (PSOA Positional- 
            Slotted-Term) Logic 

Example: Graph          (PSOA Positional- 
             Slotted-Term) Logic 

 Socrates#Philosopher( 
   c. 469 BC, 399 BC; 
   Substance->P1; 
   Teaching->T1) 

399 BC 

Substance 

inst0 instn 

slot1 

slotn 

. . . 

   inst’1, …, inst’m; 
             slot1->inst1; 

   slotn->instn) 

 inst0#class( 

   . . . 

Teaching 

Socrates 

inst’1 

inst’m . . . 

c. 469 BC 

P1 

T1 

inst1 

class 

Philosopher 
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inst1,1 

rel1(inst1,1, inst1,2, 

       ..., inst1,n1)   
inst1,2 inst1,n1 

inst2,1 
rel2(inst2,1, inst2,2, 

       ...,inst2,n2) 
inst2,2 inst2,n2 

rel1 

rel2 

General: Graph (ground,      Logic 
      shorthand) 

Example: Graph       Logic 

Invest Invest(|WB, |GE, 

       US$ 3·109)   
US$ 3·109 

Invest 
Invest(|JS, |VW, 

       US$ 5·103) 
US$ 5·103 

Rules: Relations Imply Relations (1) 

WB GE 

JS VW 
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Rules: Relations Imply Relations (3) 
General: Graph (inst/var terms)     Logic 

Example: Graph       Logic 

( Y, A) 

Invest(|WB, Y, A)   

term1,1 term1,2 term1,n1 

term2,1 
  rel2(term2,1, term2,2, 

         ..., term2,n2) 
term2,2 term2,n2 rel2 

rel1 (vari,j) 

  rel1(term1,1, term1,2, 

       ..., term1,n1)    

Invest 

Invest US$ 5·103 Invest(|JS, Y, 

       US$ 5·103) 

WB 

JS 

Y A 

Y 



94 Rules: Conjuncts Imply Relations (1*) 
General: Graph (prenormal)     Logic 

Example: Graph       Logic 

( Y, A) 

Invest(|WB, Y, A)  

Trust(|JS, Y)       

term1,1 term1,2 term1,n1 

term2,1   rel2(term2,1, term2,2, 

         ..., term2,n2)     

term2,2 term2,n2 rel2 

rel1 

(vari,j) 
  rel1(term1,1, term1,2, 

       ..., term1,n1)  

Invest 

Invest US$ 5·103 
Invest(|JS, Y, 

       US$ 5·103) 

term3,1 term3,2 term3,n3 rel3   rel3(term3,1, term3,2, 
         ..., term3,n3) 

Trust 

WB 

JS 

JS 

Y A 

Y 

Y 
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<Implies closure="universal"> 

    <And> 

        <Atom> 

            <Rel>Invest</Rel> 

            <Ind unique="no">WB</Ind> 

            <Var>Y</Var> 

            <Var>A</Var> 

        </Atom> 

        <Atom> 

            <Rel>Trust</Rel> 

            <Ind unique="no">JS</Ind> 

            <Var>Y</Var> 

        </Atom> 

    </And> 

    <Atom> 

        <Rel>Invest</Rel> 

        <Ind unique="no">JS</Ind> 

        <Var>Y</Var> 

        <Data>US$ 5·103</Data>    <!– superscript “3” to be parsed as Unicode U+00B3 --> 

    </Atom> 

</Implies> 

Example: RuleML/XML   Logic 

Rules: Conjuncts Imply Relations (2) 

( Y, A) 

(Invest(|WB, Y, A)  

 Trust(|JS, Y)       
 Invest(|JS, Y, 

        US$ 5·103)) 

Proposing an attribute unique 

with value "no" for NNS, 

and "yes" for UNS as the default 



Positional-Slotted-Term Logic: Rule-defined 

Anonymous Family Frame (Visualized from IJCAI-2011 Presentation) 

Example: Graph          (PSOA Positional- 
             Slotted-Term) Logic 

  Group ( 

                   Forall ?Hu ?Wi ?Ch ( 

                    ?1#family(husb->?Hu 

                                     wife->?Wi 

                                     child->?Ch)   :- 

                       And(married(?Hu ?Wi) 

                               Or(kid(?Hu ?Ch) 

                                    kid(?Wi ?Ch))) ) 

 

                    married(Joe Sue) 

                    kid(Sue Pete) 

                            ) 

husb 
wife 

family 

?1 

?Hu 

?Wi 
child 

?Ch 

married ?Hu ?Wi 

kid ?Hu ?Ch 

kid ?Ch ?Wi 

Joe Sue 

kid Sue Pete 

married 
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http://www.cs.unb.ca/~boley/talks/SemanticsPsoaRules-talk-IJCAI2011.pdf
http://www.cs.unb.ca/~boley/talks/SemanticsPsoaRules-talk-IJCAI2011.pdf
http://www.cs.unb.ca/~boley/talks/SemanticsPsoaRules-talk-IJCAI2011.pdf


Positional-Slotted-Term Logic: Ground Facts, 

incl. Deduced Frame, Model Family Semantics 

Example: Graph          (PSOA Positional- 
             Slotted-Term) Logic 

  Group ( 

                     

                      o#family(husb->Joe 

                                     wife->Sue 

                                     child->Pete) 

                        

                                

                                     

 

                    married(Joe Sue) 

                    kid(Sue Pete) 

                            ) 

husb 

family 

child 

Joe Sue 

kid Sue Pete 

married 

Joe Sue 
Pete 

wife 
o 

Previous slide’s 

existential variable ?1 

in rule head becomes 

new OID constant o 

in frame fact, deduced  

from relational facts 

For reference implementation of PSOA querying see PSOATransRun 
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http://wiki.ruleml.org/index.php/PSOA_RuleML


Positional-Slotted-Term Logic: Conversely, 

Given Facts, Rule Can Be Inductively Learned 

Example: Graph 

husb 

family 

child 

M1 W1 

kid M1 C1 

married 

M1 W1 
C1 

wife 
o1 

kid W1 C1 

husb 

family 

child 

Mn 
Wn 

Cz 
wife 

on 

Mn Wn married 

kid Mn Cx kid Wn Cy 

Abstracting OID 

constants o1, ... , on 

to regain existential 

variable ?1 of previous rule, 

now induced from matching 

relational and frame facts 
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Orthogonal Graphical Features 
 Axes of Grailog Systematics 

• Box axes: 
• Corners: pointed vs. snipped vs. rounded 

• To quote/copy vs. reify/instantiate vs. evaluate contents 
(cf. Lisp, Prolog, Relfun, Hilog, RIF, and IKL) 

• Shapes (rectangle-derived): composed from 
sides that are straight vs. concave vs. convex 
• For neutral vs. function vs. relation contents 

• Contents: elementary vs. complex nodes 

• Arrow axes: 
• Shafts: single vs. double 
• Heads: triangular vs. diamond 
• Tails: plain vs. bulleted vs. colonized 

• Box & Arrow (line-style) axes: 
solid vs. dashed, linear vs. (box only) wavy 

 

http://en.wikipedia.org/wiki/Lisp_(programming_language)
http://en.wikipedia.org/wiki/Prolog
http://www.relfun.org/
http://www.cs.sunysb.edu/~warren/xsbbook/node45.html
http://www.w3.org/2005/rules/wiki/RIF_Working_Group
http://www.ihmc.us/users/phayes/IKL/GUIDE/GUIDE.html
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Graphical Elements: Box Systematics 
  Axes of Corners and Shapes 

Per  … Copy    … Instantiation        … Value 

Rect-     Snip-         Round- 

Neutral 

-angle 
 

 

Individual 
(Function Application) 

-2cave 
 

 

Function 

-4cave 

 

 

Proposition 
(Relation Application) 

-2vex 
 

 

Relation 
(incl. Class) 

-4vex 

Shape: 

Corner: 
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Graphical Elements: Boxes 
  Function/Relation-Neutral Shape of 
Angles Varied w.r.t. Corner Dimension 

– Rectangle: Neutral ‘per copy’ nodes quote their contents 
 

 

  

– Snipangle (octagon): Neutral ‘per instantiation’ nodes 

dereference contained variables to values from context 
 

  

 

– Roundangle (rounded angles): Neutral ‘per value’ nodes 

evaluate their contents through instantiation of variables 

and activation of function/relation applications 

2 X X=3 : 

2 X X=3 : 2 3 

2 X X=3 : 6 
Assuming Mult 

built-in function Mult 

Mult 

Mult 2 X Mult 

Mult 
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Graphical Elements: Boxes  Concave 
– Rect2cave (rectangle with 2 concave - top/bottom - sides): 

Elementary nodes for individuals (instances). 

Complex nodes for quoted instance-denoting terms 

(constructor-function applications) 

– Snip2cave (snipped): Elementary nodes for variables. 

Complex nodes for instantiated (reified) 

function applications 

– Round2cave (rounded): Complex nodes for evaluated 

built-in or equation-defined function applications 
 

– Rect4cave (4 concave sides): Elementary nodes for fct’s. 

Complex nodes for quoted functional (function-denoting) terms 

– Snip4cave: Complex nodes for instantiated funct’l terms 

– Round4cave: Complex nodes for evaluated functional 

applications (active, function-returning applications) 
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Graphical Elements: Boxes  Convex 
– Rect2vex (rectangle with 2 convex - top/bottom - sides): 

Elementary nodes for truth constants (true, false, unknown). 

Complex nodes for quoted truth-denoting propositions  

(embedded relation applications) 

– Snip2vex: Complex nodes for instantiated (reified) 

relation applications 

– Round2vex: Complex nodes for evaluated 

relation applications (e.g. as atomic formulas) and for 

connective uses 
 

– Rect4vex: Elementary nodes for relations, e.g. unary 

ones (classes). Complex nodes for quoted relational 

(relation-denoting) terms 

– Snip4vex: Complex nodes for instantiated relat’l terms 

– Round4vex (oval): Complex nodes for evaluated relat’l 

applications (active, relation-returning applications) 
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Conclusions (1) 
• Grailog 1.0 incorporates feedback on earlier versions 

• Graphical elements for novel box & arrow systematics 
using orthogonal graphical features 
– Leaving color (except for IRIs) for other purposes, e.g. 

highlighting subgraphs (for retrieval and inference) 

• Introducing Unique vs. Non-unique Name Specification 

• Focus on mapping to a family of logics as in RuleML 

• Use cases from cognition to technology to business 
– E.g. “Logical Foundations of Cognitive Science”: 

http://www.ict.tuwien.ac.at/lva/Boley_LFCS/index.html 

• Processing of earlier Grailog-like DRLHs studied in 
Lisp, FIT, and Relfun 

• For Grailog, aligned with Web-rule standard RuleML: 
http://wiki.ruleml.org/index.php/Grailog  

http://www.ict.tuwien.ac.at/lva/Boley_LFCS/index.html
http://wiki.ruleml.org/index.php/Grailog
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Conclusions (2) 
• Symbolic-to-visual mappings implemented as 

Semantic Web Techniques Fall 2012 Projects: 
– Team 1 A Grailog Visualizer for Datalog RuleML via XSLT 

2.0 Translation to SVG by Sven Schmidt and Martin Koch: 
An Int'l Rule Challenge 2013 paper & demo introduced Grailog KS Viz 

– Team 8 Visualizing SWRL’s Unary/Binary Datalog RuleML 

in Grailog by Bo Yan, Junyan Zhang, and Ismail Akbari: 
A Canadian Semantic Web Symposium 2013 paper gave an overview 

• Grailog invites feature choice or combination 

– E.g. n-ary hyperarcs or n-slot frames or both 

• Grailog Initiative on open standardization 

calls for further feedback for future 1.x versions 

http://www.cs.unb.ca/~boley/cs6795swt/syllabus.html
http://www.cs.unb.ca/~boley/cs6795swt/fall2012projects.html
http://www.cs.unb.ca/~boley/cs6795swt/Fall2012_Team1.pdf
http://people.unb.ca/~sschmidt/cs6795swt/index.html
http://people.unb.ca/~sschmidt/cs6795swt/index.html
http://2013.ruleml.org/
http://www.cs.unb.ca/~boley/papers/GrailogKSViz.pdf
http://www.cs.unb.ca/~boley/cs6795swt/Fall2012_Team8.pdf
http://2012team8project.weebly.com/index.html
http://2012team8project.weebly.com/index.html
http://www.unbsj.ca/sase/csas/data/ws/csws2013/
http://www.cs.unb.ca/~boley/papers/SWRLRulesPSOAGrailog.pdf
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Future Work (1) 
• Refine/extend Grailog, e.g. along with API4KB effort  

– Compare with other graph formalisms, e.g. Conceptual 
Graphs (http://conceptualstructures.org) and CoGui tool 

– Define mappings to/fro UML structure diagrams + OCL, 
adopting UML behavior diagrams (http://www.uml.org) 

• Implement further tools, e.g. as use case for 
(Functional) RuleML (http://ruleml.org/fun) engines 
– More mappings between graphs, logic, and RuleML/XML: 

Grailog generators: Further symbolic-to-visual mappings 
Grailog parsers: Initial visual-to-symbolic mappings 

– Graph indexing & querying (cf. http://www.hypergraphdb.org) 

– Graph transformations (normal form, typing homomorphism, merge, ...) 

– Advanced graph-theoretical operations (e.g., path tracing) 

– Exploit Grailog parallelism in implementation 

http://www.omgwiki.org/API4KB/doku.php
http://conceptualstructures.org/
http://www2.lirmm.fr/cogui/
http://www.uml.org/
http://ruleml.org/fun
http://www.hypergraphdb.org/
http://dpf.hib.no/wp-content/uploads/unb_pres.pdf
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Future Work (2) 
• Develop a Grailog structure editor, e.g. supporting: 

– Auto-specialize of neutral application boxes (angles) to 
function apps (2caves) or relation apps (2vexes), depending on contents 

– Auto-specialize of neutral operator boxes (angles) to 
functions (4caves) or relations (4vexes), depending on context 

• Benefit from, and contribute to, Protégé visualization 
plug-ins such as Jambalaya/OntoGraf and OWLViz 
for OWL ontologies and Axiomé for SWRL rules 

• Proceed from the 2-dimensional (planar) Grailog to a 
3-dimensional (spatial) one 
– Utilize advantages of crossing-free layout, spatial shortcuts, 

and analogical representation of 3D worlds 

– Mitigate disadvantages of occlusion and 
of harder spatial orientation and navigation 

• Consider the 4th (temporal) dimension of animations 
to visualize logical inferences, graph processing, etc. 

http://www.thechiselgroup.org/jambalaya
http://protegewiki.stanford.edu/wiki/OntoGraf
http://protegewiki.stanford.edu/wiki/OWLViz
http://protegewiki.stanford.edu/wiki/Axiom%C3%A9

