

Progress and challenges in ISO 15926

Johan W. Klüwer, DNV Arild Waaler, UiO

Overview

- Part 1: From the point of view of logic
 - Main concepts from logic
 - Description logic knowledge bases
 - Templates
- Part 2: Implementation demo

Recap of some notions from logic

- Logical languages
 - formal expressions
 - inference rules
 - formal semantics
- The consequence relation
 - a relation between premises and conclusion:

$$\Gamma \mid -\varphi$$

- consistency: not Γ |- contradiction
- decidable vs undecidable vs tractable

Reasoning services for decidable languages MANAGING RISK

- Consistency checking
- Classification in ontology languages
 - important when formalization is not backed up by strong intuitions
- More advanced:
 - query languages
 - executable specifications
- Tradeoff expressivity vs complexity!!!
 - Use an as least expressive language as possible

The Description logic family

- Main idea: Decidable fragments of first-order logic suited for knowledge representation
- Expressive DLs: push the limit of decidability
 - Ex: OWL DL, OWL 2
- Lightweight DLs: push the limit of tractability
 - Ex: DL-Lite, EL
- Terminology vs instances
 - Query languages for instances

DL Knowledge Base

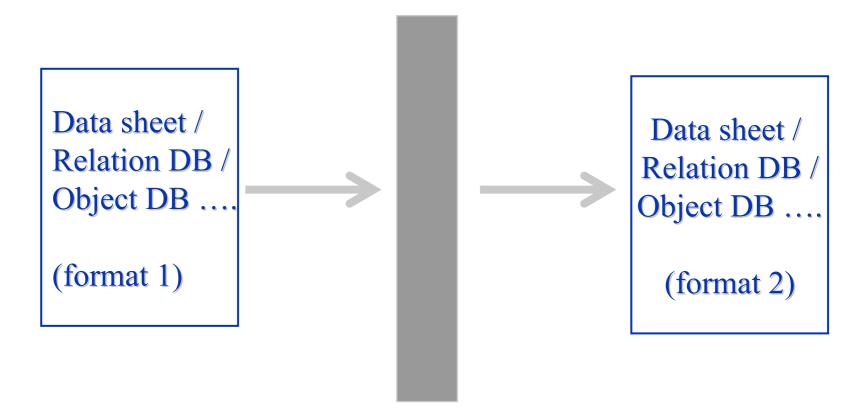
- A DL Knowledge base consists of
 - a set of "terminological" axioms (the Tbox)
 - a set of "assertional" axioms (the Abox)
- Tbox axioms are of the form:

f % gOf 4 gOu % vOu 4 v and u N % u f Og concepts, u, v roles, u N set of transitive roles

Abox axioms are of the form:

x,y individual names, D a concept and R a role

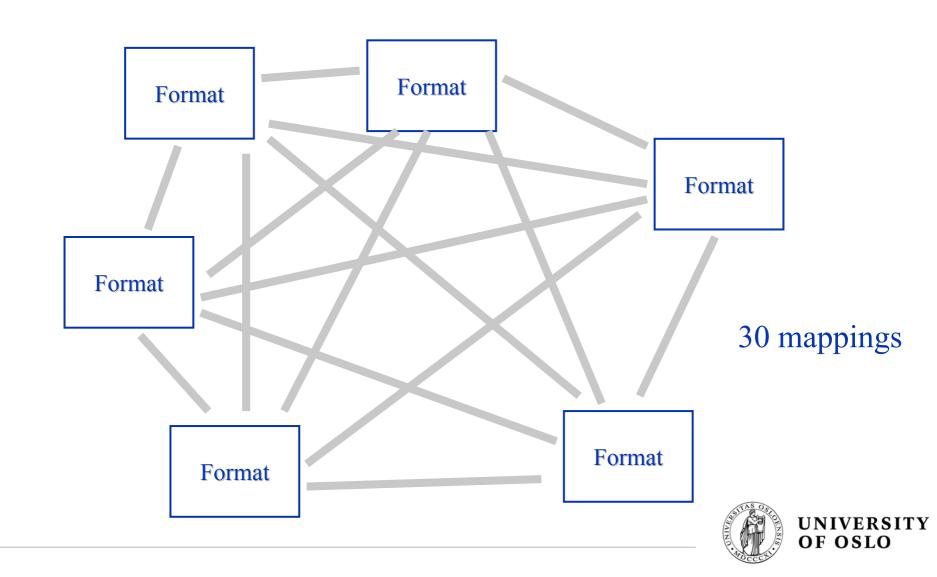
Example of reasoning



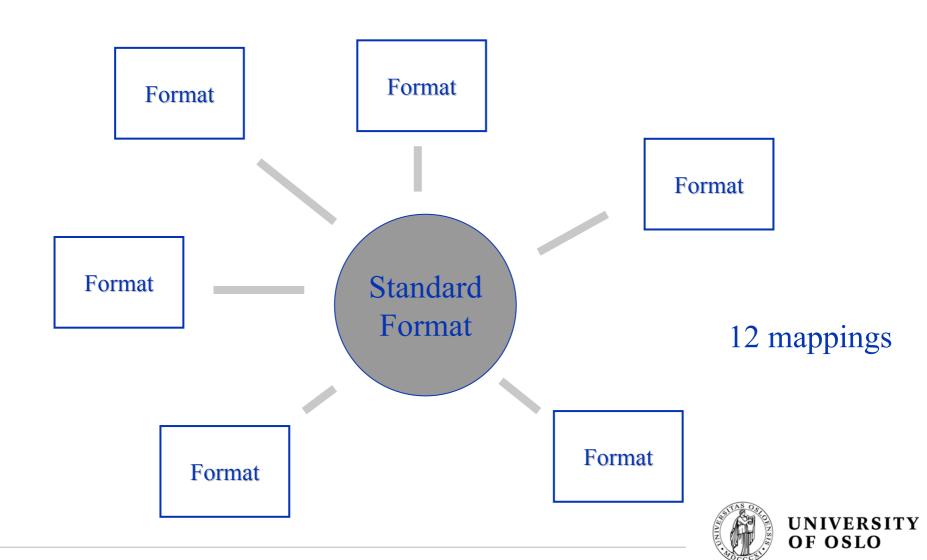
- fi> «¶tf¶¿″»»ƒ»
] Kp ...t»fġf♯ "·″f¶·ftr §fl°¤» ... PhysicalObject L
] d §″»"f¤»r §fl°¤»K •T L

ISO 15926: what for?

Data translation/exchange is difficult



- There is often not a 1-1 relationship between items
- An item in one data sheet
 - may correspond to a combination of many items in another
 - may lack in another
- There may be complex information about classes
 - what if the data sheets have different classes?

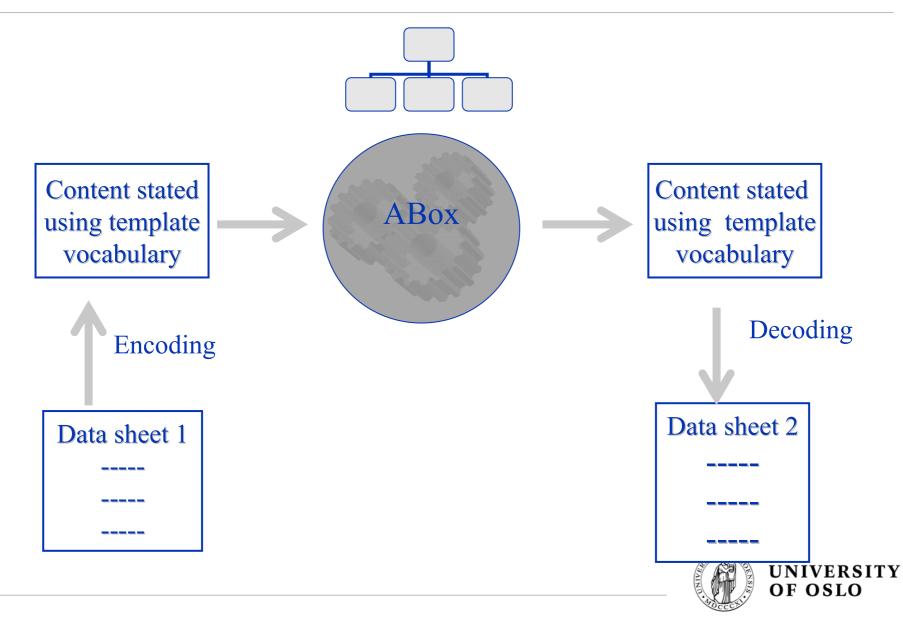

Direct translations: many mappings!

Solution: Standardization

ISO 15926: generic and general

- It's difficult to design a general standard
 - ... much more difficult than a specific mapping!
- One has to design
 - a vocabulary for the standard
 - a method to map info to and from the standard
- Examples of tricky information:
 - presentation formats
 - range: the camera works from 0 to 55 deg Celsius
- In DL terms: ISO 15926 is a huge TBox

Templates



- Vocabulary external to ontology
 - designed to directly express data sheet information
- Templates translate instances into the ontology
 - thereby given meaning
 - hides details of encoding
- In DL terms: Templates specify the generation of an ABox in the language of the ontology

Structure of the solution

ISO 15926: recent progress

- Migration to state of the art ontology languages
- Core part + reference library -> FOL / DL
- Templates expressed in FOL / DL
- Encoding in ontology languages
 - Coherent logic fragment
 - Research on hyper-tableaux!

ISO 15926 tools and formats

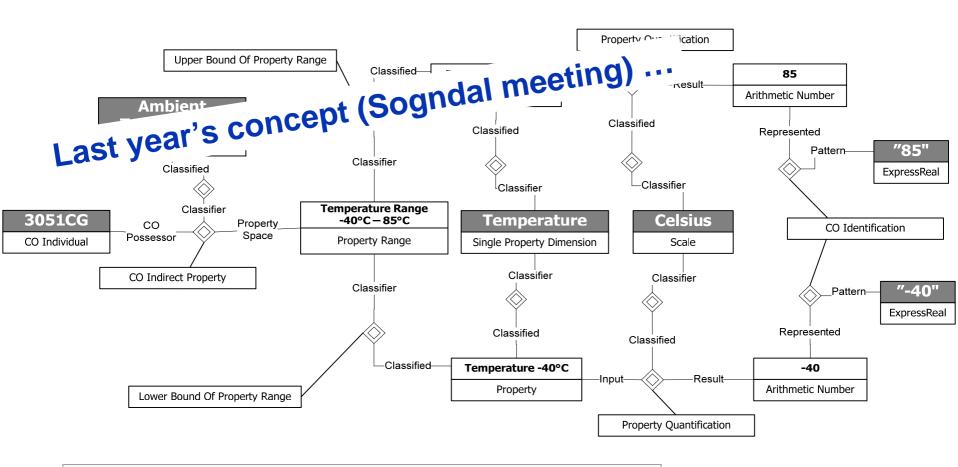
Using *templates* according to ISO 15926 Parts 7 and 8

Template concepts: ISO 15926-7

- ISO 15926 is all about creating a common language
- Concepts and terminologies are collected in Reference Data Libraries (RDL's)
- Templates are statement patterns using RDL terms
- ISO 15926 contains three parts dedicated to templates:
 - Part 7: Concepts and logic. Available in draft form
 - Part 8: Data formats. OWL prototype formats available.
 - Part 9: Web services. Prototype implementation available.

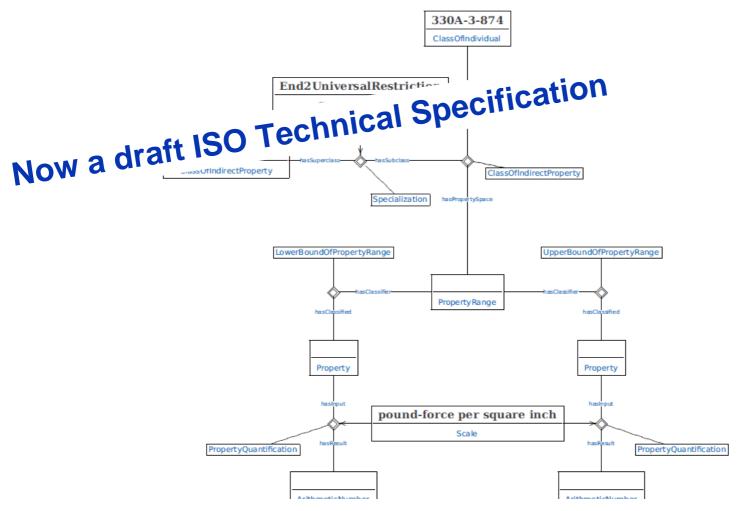
Templates: Signatures and rules

- The signature of a template is comparable to a table definition
 - Give a set of roles
 - For each role, give a type
 - Data types string, integer, date
 - Reference Data Library types (


е	Order	Role name	Role type
	1	Class	ClassOfIndividual
	2	Restricted Property	ClassOfIndirectProperty
(3	Scale	Scale
	4	Upper Bound	ExpressReal
	5	Lower Bound	ExpressReal

- Each "row" in a "template table" is a statement in the RDL language
 - Providing a simple interface for capturing specialist knowledge
 - Supporting a gradual introduction of semantics to traditional data stores
- A template rule defines the deep structure of statements
 - Semantic reasoning may be applied to check adequacy
 - Information exchange using templates can be formally validated
 - Information validation is a main goal in the IOHN project

Model: Ambient Temperature Range



3051CG ambient temperature: $-40^{\circ}C - 85^{\circ}C$

PropertyRangeMagnitudeRestrictionOf Class

Reasoner tasks

- Satisfiability of templates
- Equivalence between templates
- Subsumption hierarchies (more/less general templates)
- Simplification (of signatures, rules)

```
Last year's concept (Sogndal) ... 'ed?)
```

Challenge: To provide these not just for Part 2, but for templates as well.

Template language

Template Syntax and Semantics

5.2.1 Template Syntax

We now define logical templates, which capture the logical and rewriting behaviour of Now in draft ISO Technical Specification subclause. ires", which will not

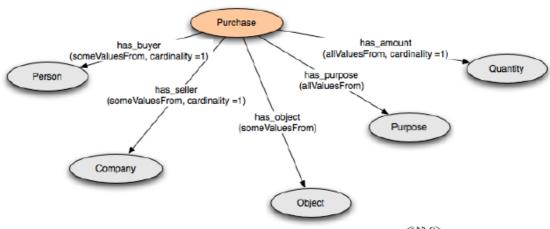
 Σ_0 order signature Σ_0 for a basic language (the predicate names of the part 2 axiomatisation).

A logical template definition over Σ is a formula of first order logic of the form

$$N(x, y, ...) \leftrightarrow \phi$$

where $N \notin \Sigma$ is a predicate symbol called the *name* of the template, x, y, \ldots are pairwise different variables called the *formal arguments*, and ϕ is a \land - \lor - \exists -formula over symbols in

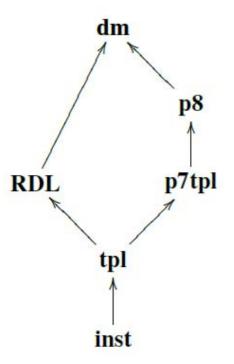
9



ISO 15926-8: Semantic Web friendly templates

- In order to put ISO 15926 into practical use, we need transport formats
- Part 8 provides an RDF/OWL ontology for template signatures
- The implementation draws on a widely used "n-ary relations" RDF pattern 13 Templates in RDF

For the representation of template (signatures) and template (signature) instances in RDF/OWL, we adopt a representation described in W3C's Working Group Note *Defining N-ary Relations* on the Semantic Web, 2006, Use Case 3. An example given in that Note is that of a Purchase, which involves a buyer, a seller, an object, a purpose, and an amount, all modelled as shown in this illustration:¹



ISO 15926-8 as a set of dependent OWL ontologies

Pattern of dependencies between resources

Prefix	content
dm Data Model (Part 2)	
RDL	Customer Reference Data Library
p8	Template ontology (Part 8)
p7tpl	Initial Set Templates (Part 7)
tpl	Customer Templates
inst	Customer data

Example (iRING): Piping network system parts

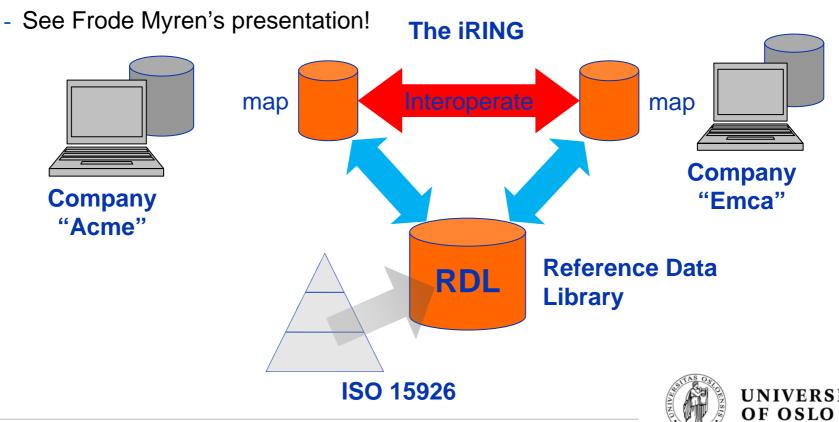
- Basis: The generic template Classified Assembly of Individual
- Domain specific: The "piping" template Piping Network System has Segment

Developing template rules: Expand and check

Template Expander

- A freely available tool for developing template definitions
 https://www.posccaesar.org/svn/pub/TemplateExpander/applet/template-expander.html
- Expand concrete template statements to see what they amount to
- Converting to (e.g.) RDF allows for visualization
- The ISO 15926-7 "initial set of templates" is available

Developing template rules: Reasoning services


- A template definition is not just a macro, but a logical axiom
- Template Expander syntax is that of the Prover9 generic First order logic prover
- The Initial set of ISO 15926-7 is auto-loaded as a starting point

Using templates: Data transfer

- The iRING initiative prototypes ISO 15926-9: Web services
- Demonstration will be given at ISA EXPO, Houston, October 6–8
- Target of ISO 15926 adapters for IOHN information architecture

Safeguarding life, property and the environment

www.dnv.com

