ISO 15926 Part 12 ontology: Examples for DL
profile

johanw
Id:
Contents
1 What is this?
2 Definitions
2.1 Declarations e e e e e e
2.1.1 Prefixes e
2.1.2 0ntology e e e
2.2 ClLaSSS . . v v i e e e e e
221 Ici:Activity e e e e e e e e e e e
222 Aci:Function e e e e e e e e e e e e e
2.2.3 lci:PhysicalObject e e
224 lci:ScalarQuantityDatum e e
2.2.5 lci:PhysicalQuantity e e e
226 IcicRole e e e e
227 lcisScale e
2.3 Object relations (object properties)o e
2.3.1 cichasQuality e e e e e e e
2.3.2 lci:qualityQuantifiedAs e e
2.3.3 rdl:hasMassMeasuremento e e e e e
2.3.4 rdl:hasParticipant e e e e e e
2.3.5 lcicparticipantIn oL e
2.3.6 lcichasFunction e
237 lcichasRole e e
238 lcitrealizedIn
239 lcicroleOf e
2.3.10 rdl:functionalln e e
2.4 Datarelations (data properties) Lo e e
24.1 lci:qualityQuantityValue
242 rdl:datumTimestamp e e e e e
2.5 Annotation relations (annotation properties)o .o e e e e
251 lcistplUOM o e
252 lcistplQuality e
2.5.3 lcistplQuantification e e e e
254 foaf:depiction e e e e e e
3 Examples
3.1 Physical qualities, quantified
3.1.1 Abig hammer and a small hammer

2.1
2141

3.1.2 SWRL rule to infer shortcut relations 6
32 STARTED Functions s 7
3.2.1 Background: introducing functions to the ontology 7
322 Modellingpattern 7
3.2.3 Aregistry of functions in referencedata 8
3.3 STARTED Requirements versus solutionso .. 9
331 Targets 9
3.3.2 Schematic representation 9
3.3.3 Industry classes for the example: Electric motors 10
3.3.4 Individuals for the example: design and replaceable parts 10
3.3.5 Designandinstalledparts, 11
3.3.6 Testing for conformance: Substitution, 12
3.3.7 TODO Rewrite as extended example: «Stream 101» examples 12
3.4 TODO SKOS concepts to represent coding schemes and meta-data 14
3.4.1 SKOS ontology, and adjustments forusein OWL 14
342 What SKOScanbring 15
343 TODOExample it 15
3.5 STARTED Roles and qualifications 16
3.5.1 STARTED Person with exam, certificate, qualifiedrole 16
3.5.2 The exam — obtaining a certificate 17
353 TODO Validduration 18
3.5.4 TODO Being qualified for a type of activities 20

What is this?

This document describes usage examples for the DL profile ontology version of ISO 15926 part 12.

Definitions

Declarations

Prefixes

Prefixes

Prefix: Ici: <http://standards.iso.org/iso/15926/>

note, not same as the the namespace of the CD, which looks inappropriate
Prefix: ex: <http://example.org/ex/>

Prefix: rdl: <http://example.org/rdl/>

Prefix: owl: <http://www.w3.0rg/2002/07/owl#>

Prefix: rdf: <http://www.w3.0rg/1999/02/22—-rdf-syntax—ns#>
Prefix: xml: <http://www.w3.0rg/XML/1998/namespace>
Prefix: xsd: <http://www.w3.0rg/2001/XMLSchema#>

Prefix: rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
Prefix: skos: <http://www.w3.0rg/2004/02/skos/core#=>

Prefix: pav: <http://purl.org/pav/>

Prefix: foaf: <http://xmIns.com/foaf/0.1/>

Ontology

Ontology declaration

Ontology: <http://standards.iso.org/iso/15926/—12/tech/ontology/examples—DL—profile>
Annotations: rdfs:label "Modelling examples for ISO 15926—12, DL profile",
owl:versioninfo "$Date: started 2016—-08—-04%",
rdfs:comment "This ontology contains examples of modelling patterns for the DL profile of ISO 15926—-12."
Import: <http://standards.iso.org/iso/15926/—12/tech/ontology/DL—profile>

2.2 Classes

Class details
2.2.1 Ici:Activity
. rdl:NailDriving

rdfs:comment An activity, the driving of a nail into a material.

2.2.2 Ici:Function

foaf:depiction http://mimir.gitlab.io/is015926-12/hammer-function.png

2.2.3 Ici:PhysicalObject
. Ici:InanimatePhysicalObject
.. rdl:Artefact
. .. rdl:Hammer

. ... rdl:BigHammer

Class: rdl:BigHammer
SubClassOf: rdl:hasMass some (Ici:qualityQuantifiedAs
some (Ici:datumUOM value rdl:kilogram and Ici:datumValue some xsd:float[> 1]))

2.2.4 Ici:ScalarQuantityDatum
. rdl:MassMeasurementDatum
. rdl:PressureMeasurementDatum
. rdl:TemperatureMeasurementDatum
2.2.5 Ici:PhysicalQuantity
. rdl:Mass
. rdl:Pressure
. rdl:Temperature
2.2.6 Ici:Role
2.2.7 Ici:Scale

We introduce some example individuals to represent scales (units of measure): kilogram, pascal, bar,
kelvin, celsius.

Individual: rdl:kilogram
Types: Ici:Scale
Individual: rdl:pascal
Types: Ici:Scale
Individual: rdl:bar
Types: Ici:Scale
Individual: rdl:kelvin
Types: Ici:Scale
Individual: rdl:celsius
Types: Ici:Scale

http://mimir.gitlab.io/iso15926-12/hammer-function.png

2.3

2.3.1

2.3.2

2.3.3

234

2.3.5

2.3.6
2.3.7
2.3.8

Object relations (object properties)
Object property details

Ici:hasQuality

. rdl:hasPhysicalQuantity

.. rdi:hasMass

. . rdl:hasPressure

. . rdl:hasTemperature
Ici:qualityQuantifiedAs

. rdl:qualityMeasuredAs
rdi:hasMassMeasurement

rdfs:comment This relation demonstrates the use of OWL property chains.

ObjectProperty: rdl:hasMassMeasurement
SubPropertyChain: rdl:hasMass o rdl:qualityMeasuredAs

rdi:hasParticipant

. rdl:hasAgent

ObjectProperty: rdl:hasAgent
InverseOf: rdl:agentin

Ici:participantin

. is tool in (rdi:toolln)

rdfs:comment This relation is to express participation in an Activity as a tool.

rdfs:comment This relation is used in examples with Hammer individual to illustrate how functional
realization is linked to the right kind of participation in (nail-driving) activities.

. rdl:agentin

rdfs:comment On the "has_agent’ relation, see e.g. p. 11 of «Relations in biomedical ontologies», Smith
et al. 2005.

ObjectProperty: rdl:agentin
Domain: Ici:Person or Ici:Organisation
Range: Ici:Activity
Ici:hasFunction
Ici:hasRole

Ici:realizedin

rdfs:comment Inspired by BFO’s «realized in» (BFO_0000054)

ObjectProperty: Ici:realizedIn
Domain: Ici:Function
Range: Ici:Activity

2.3.9
2.3.10

2.4

2.41

2.4.2

2.5

2.5.1
2.5.2
2.5.3
254

3.1
3.1.1

Ici:roleOf
rdl:functionalln

rdfs:comment A shortcut relation to represent a chain of «has function» and «realized in».

ObjectProperty: rdl:functionalin
SubPropertyChain: Ici:hasFunction o Ici:realizedIn

Data relations (data properties)

Data property details
Ici:qualityQuantityValue

. rdl:hasMass_in_kilogram

DataProperty: rdl:hasMass_in_kilogram
Domain: Ici:PhysicalObject

rdl:datumTimestamp

rdfs:comment Example relation for recording the time a measurement is taken.

Annotation relations (annotation properties)

Annotation property details
lci:tplUOM
Ici:tplQuality
Ici:tplQuantification
foaf:depiction

rdfs:comment This FOAF annotation property is for providing illustrations. In the current context, the
main interest is in showing modelling diagrams. With a valid image URL, a thumbnail will be
displayed in the Protégé editor.

Examples

#it
Test data
##

Physical qualities, quantified
A big hammer and a small hammer
The following declarations describe hbig and hsmall as individuals in the Hammer class, with measured

weights of 4.7 and 0.3 kg, respectively.

Individual: ex:hbig
Types: rdl:Hammer
Annotations: foaf:depiction <http://mimir.gitlab.io/iso15926—12/big—hammer.png>
Facts: rdl:hasMass ex:hbig_mass

Individual: ex:hbig_mass
Types: rdl:Mass

Facts: rdl:qualityMeasuredAs ex:hbig_mass_datum

Individual: ex:hbig_mass_datum
Types: rdl:MassMeasurementDatum
Facts: Ici:datumUOM rdl:kilogram, Ici:datumValue 4.7f

Individual: ex:hsmall
Types: rdl:Hammer
Facts: rdl:hasMass ex:hsmall_mass

Individual: ex:hsmall_mass
Types: rdl:Mass
Facts: rdl:qualityMeasuredAs ex:hsmall_mass_datum

Individual: ex:hsmall_mass_datum
Types: rdl:MassMeasurementDatum
Facts: Ici:datumUOM rdl:kilogram, Ici:datumValue .3f

The following diagram illustrates the main points of the hammer mass representation.

The «shortcut» relation rdl:hasMass_in_kilogram is emphasised with a blue arrow. For precision,
this relation should be interpreted in terms of the femplate terminology, as an instance of a shortcut
pattern for quantified physical properties. The relation may then be annotated with pointers to its in-
tended template role fillers, i.e., hasMass, qualityMeasuredAs, and kilogram, to allow for retrieval of
the relevant information using SPARQL, without interference with the DL reasoning requirements.

(We could add InanimatePhysicalObject hasMass only Mass, and Mass qualityMeasuredAs only
MassQuantityDatum to the diagram?)

ieh ied lich
‘©InanimatePhysicaIObject ‘“r ‘@Physical@uantiw r |©Sca|arQuantityDatum ‘"r
I, i) i)

i i i
|
‘@Mass@uantiwDatum
| ' f
| |

Annotations on hasMass_in_kilogram: L

tplQuality = hasMass f
tplQuantification = qualityMeasuredAs I,*'
tpIJOM = kilogram /

hasMass_in_kilogram

Q#T""xsd:ﬂoat

qualityMeasuredAs datumalue

1@ hhig_mass_datum

datumUCM

Y

y
@kilogram

3.1.2 SWRL rule to infer shortcut relations

The detailed model of physical qualities illustrated above allows for several degrees of freedom. While
the relation hasMass will typically be characterized as functional, there may be many ways to quantify the
mass of an individual, by different measurements or estimates as well as with conventional declarations.
This is more freedom than is useful in practical cases where we assume our (mass, etc.) data is reliable
and where requirements can be directly matched to them.

Shortcut relations that gloss over the possible variations are suitable for contexts that allow for sim-
plifying assumptions. The following SWRL rule allows for shortcut relationships to be inferred from the
basic model. This kind of rule is supported by the HermiT and Pellet DL reasoners.

Rule: rdl:hasMass(?x, ?y), rdl:qualityMeasuredAs(?y, ?z), Ici:datumUOM(?z, rdl:kilogram), Ici:datumValue(?z,?u) —>
srdl:hasMass_in_kilogram(?x, ?u)

3.2
3.2.1

3.2.2

Ideally, shortcuts should be supported by a formal framework that gives them precise characterization.
The template approach of ISO 15926-7 can be adapted for the DL profile to provide a robust implemen-
tation that also works with existing semantic technology solutions.

STARTED Functions
Background: introducing functions to the ontology

The DL profile doesn’t include the ISO 15926-2 entity type «functional physical object». This is partly
due to the lack of clarity in how the entity type is supposed to be used: for instance, the defining phrase
«A FunctionalPhysicalObject has functional, rather than material, continuity as its basis for identity»
itself uses the word «function», and is no help in explaining what functions are.

Most of the physical things that we wish to describe in a store of industrial data will have a function —
they are there to do something. This includes structural elements of a factory, equipment, and instruments.
We could almost identify the notions of «physical artefact», made objects, and «functional physical
object». Physical things that do not have a function in the sense of being made for a purpose include
streams of liquid, volumes of gas, and other amounts of raw materials.

(It may be noted that many Non-physical things, such as a regulations, acts, and documents, also
have functions. It would therefore make sense to include «functional object» in the upper ontology as a
superclass to «functional physical object».)

Some objects have functions that are simple, such as a nut serving to secure a bolt in its place, while
others have complex and generic functions, such as a control mechanism or a robot arm. The functions
may be documented, and it’s common to talk about functions changing over time. Observations like
these indicate that it makes sense to represent functions as individuals in their own right: there is reason
to include «function» as an upper ontology class.

Because ISO 15926 provides little detail on the ontology of functions, we need to look elsewhere for
guidance on how to represent them. A useful account, which inspires the following proposal, is contained
in the paper Function, Role, and Disposition in Basic Formal Ontology.

Assume for simplicity that a hammer has a single function: to drive nails. Following Arp and Smith,
this function can be realized in certain processes (in ISO 15926, processes will be instances of the
Activity type), «in virtue of» the physical make-up of the hammer. The hammer was shaped with shaft
and hammerhead precisely in order to serve its nail-driving function. We can add to this description that
when the hammer is acting functionally in a process, it must participate in a suitably active role, for
instance named a tool role. Passive participation in a process will not be an expression of function: for
instance, if a nail is driven into the wooden shaft of a hammer x, then x is indeed a participant in the
nail-driving activity, but obviously this doesn’t count as a realization of x’s function. This means we need
to pay attention which kinds of participation count as realization of function.

Modelling pattern

A description of function could look as follows: A Hammer’s function is realized precisely when it is
used as a tool to drive a nail. While this may appear trivial, the shape of the sentence can guide us to a
modelling pattern for ontology. Here is a slightly more stringent form:

A Hammer x has a function that is only realized in Nail-driving activities where x has the tool role.

A diagram shows the basic pattern. A hammer 4 that is the tool used in nail-driving activity d, and the
function of 4 is realized in the nail-driving.

3.2.3

©Hammer ©Functi0n

We add this example to the ontology, using hbig as an example.
Individual: ex:nailing # "d" in the diagram

Types: rdl:NailDriving
Annotations: rdfs:label "An hbig nail driving"

Individual: ex:hbig_f # "f" in the diagram
Annotations: rdfs:label "Function of hbig" ,
foaf:depiction <http://mimir.gitlab.io/iso15926—12/hammer_function.png>
Types: Ici:Function
Facts: Ici:realizedIn ex:nailing

Individual: ex:hbig
Facts: Ici:hasFunction ex:hbig_f, rdl:toolln ex:nailing

The point that hammer functions are only realized in nail driving processes where the hammer is active
as a tool is clearly important. However, the inbound pattern of arrows from # to d is one that can not be
lifted into description logic class constraints — it is an example of a limitation that ontology designers
frequently have to work around. This means we can’t fully capture the relationship between functions
and the ways they can be realized using OWL.

The chain of relationships has_function o realized_in captures a relation «serves its function in pro-
cess». Name this relation functionalln. We then wish to say, if a hammer is functional in a process, then
it participates as a tool in that process. A SWRL rule can be readily provided for this constraint. Some
reasoners, including HermiT and Pellet, will in fact take rules in this form into account during reasoning.

Rule: rdl:Hammer(?x), rdl:functionalln(?x,?y) —> rdl:toolln(?x,?y)

A registry of functions in reference data

With an ontology that supports explicit talk about functions, we obtain new abilities to characterize
industrial artefacts and processes. Here are some examples.

1. The relation functionalln can be used to connect classes of equipment to the classes of activities
they are intended to serve. For example, a pump is functional in pumping activities, and not (to
borrow an example from the Part 2 text) in anchoring.

2. Functions can be used to express requirements. Consider two kinds of hammers, the claw hammer
and the ball-peen hammer. The claw hammer has a nail-extraction function which the ball-peen
hammer lacks. If you need tools to both pound nails and extract them again, this may be expressed
as a functional requirement: you need something that has both functions, and either a claw hammer
or a set of ball-peen hammer and pincers will serve. Extrapolating from this, functions may be used
to characterize the capabilities of equipment, such as the capacity of a class of pumps, and a class
of equipment can then be tested against a functional requirement.

3. When a function is represented as an individual, it can enter into explicit relations to other entities,
such as documents that describe it

3.3 STARTED Requirements versus solutions

3.3.1 Targets

e use reasoning to find out whether an individual is compatible with a requirement stated as a class

constraint

— typically, we want to avoid equivalence declarations for classes because the reasoning is too

expensive when there’s a large number of classes

e for complex designs with many individual parts, use substitution to check whether a graph of

individuals is

— compatible with the requirements

— complete, in the sense of instantiating every required part

e support representation of replaceable parts

3.3.2 Schematic representation

The following drawing is intended to be a simplified representation of «Requirements Network Structure
using IEC 81346», as modelled in ontology. Let a be an individual component in a design, and FRI,
CT1, PS1, and so forth stand for classes at levels of detail that match functional, component, and prod-
uct specifications. The downward sequence represents phases of increasingly detailed requirements. We
write a: F for, «a is an F», so that the yellow node labelled a: FRI means, the functional specification lays
down a requirement for a to be of type FRI. At the bottom of the diagram we have al, a2, and so forth,
representing physical individuals that are installed to fill the role specified for a, with a/ installed first,
then replaced by a2, etc. These physical individuals have types H/ and H2, intended to represent types

of purchased items.

Functional
Specification

Component
Specification

Product
Specification

Installed
Object

al:H1

>

a2:H2

>

a3:H1

The modelling example described in the following paragraphs should demonstrate two aspects.

1. The sequence of replaced parts is represented in a form suitable for storage and retrieval.

2. We can use automated reasoning to check whether a replaceable part conforms to the design re-
quirements.

3.3.3 Industry classes for the example: Electric motors

We will assume the design describes an electric motor, with classes for: Driver for the functional speci-
fication, Electric Motor for component, Electric Motor ABCD for product, and ACME A and ACME B
as examples of product types (models made by ACME).

The assumption is that the design proceeds from very generic requirements to a detailed specification,
where the products ACME A and ACME B are finally chosen for installation. As an example of a re-
quirement, we say the Component specification requires at least 850 watts of output power. The ACME
A model delivers 900 watts and is suitable, but ACME B delivers only 800 watts, as an example of a
non-conformant choice.

We declare the ontology resources — five classes and one data property.

DataProperty: rdl:DriverPower_watts
Domain: rdl:Driver
Class: rdl:Driver
SubClassOf: rdl:Artefact
Annotations: rdfs:label "Driver ... (FR1)"
Class: rdl:EIMotor
SubClassOf: rdl:Driver
Annotations: rdfs:label "Electric Motor ... (CT1)"
Class: rdl:EIMotorABCD
SubClassOf: rdl:EIMotor, rdl:DriverPower_watts only xsd:float[>= 850]
Annotations: rdfs:label "El Motor ABCD ... (PS1)"
Class: rdl:EIMotorACME_A
SubClassOf: rdl:EIMotor, rdl:DriverPower_watts value 900f
Annotations: rdfs:label "El Motor ACME A (PS1A)"
Class: rdl:EIMotorACME_B
SubClassOf: rdl:EIMotor, rdl:DriverPower_watts value 800f
Annotations: rdfs:label "El Motor ACME B (PS1B)"

The following diagram illustrates how the main classes are related. Note that the requirements at each
stage of specification (FR, CT, and PS) will in real cases involve many more classes than are shown here.

power (watts) »
@Electric Motor Q}z 850f

only

- -

B power (watts) = power (watts) =
@EI. Motor ACME A .QUUT @EI. Motor ACME B .BUUT @EIMUtDrAEICD

3.3.4 Individuals for the example: design and replaceable parts

We will assume a is the individual that represents our motor during design, and that al, a2, and a3 are
replaceable individuals installed to fill the role of a in the assembly.
Individual: ex:a
Annotations: rdfs:label "El Motor a"
Types: rdl:Driver, rdl:EIMotor, rdl:EIMotorABCD
Individual: ex:at
Annotations: rdfs:label "a1 ACME A"

10

Types: rdl:EIMotorACME_A
Individual: ex:a2

Annotations: rdfs:label "a2 ACME B"

Types: rdl:EIMotorACME_B
Individual: ex:a3

Annotations: rdfs:label "a3 ACME A"

Types: rdl:EIMotorACME_A

@Electric Motor

— LA —

u power (watts) = power (watts) =
@ El. Motor ACME A QQUUT @EI. Motor ACME B QBUUT @EIMUtDrAEICD

AR

{ 3
JAA
. l|."r = \‘E = =
/ A\

/ \

@ [@~ @~ ®-

3.3.5 Design and installed parts

The design model provides requirements for objects like a. We postulate that for each object in the
design, there is a type of role that can be filled by installed parts.

ObjectProperty: rdl:role_of_design
Annotations: rdfs:label "role as design artefact"
Domain: Ici:Role
Range: rdl:Artefact

Class: ex:DesignRole_a
Annotations: rdfs:label "Design role a"
SubClassOf: Ici:Role, rdl:role_of_design value ex:a

A replaceable part will occupy a designed role for a limited time only. We introduce data properties to
attribute start and end times to the individual roles. (These are short-cuts. In a detailed account of designs
and parts, these simple relations should be supported by modelling to reflect that the roles obtain as a
result of installation and removal processes.)

DataProperty: rdl:role_start
Domain: Ici:Role
Range: xsd:dateTime
DataProperty: rdl:role_end
Domain: Ici:Role
Range: xsd:dateTime

Each part that is installed as a takes on the role of « in the design, but at different times.

Individual: ex:at
Facts: Ici:hasRole ex:al_as_a
Individual: ex:al_as_a
Types: ex:DesignRole_a
Facts: rdl:role_start "2016—01-01T10:00:00Z"*xsd:dateTime, rdl:role_end "2016—01-10T10:00:00Z"*"xsd:dateTime

Individual: ex:a2

Facts: Ici:hasRole ex:a2_as _a
Individual: ex:a2_as_a

11

power

3.3.6

Types: ex:DesignRole_a
Facts: rdl:role_start "2016—02—01T10:00:00Z"*xsd:dateTime, rdl:role_end "2016—02—10T10:00:00Z"**xsd:dateTime

Individual: ex:a3
Facts: Ici:hasRole ex:a3_as_a
Individual: ex:a3_as_a
Types: ex:DesignRole_a
Facts: rdl:role_start "2016—03—01T10:00:00Z"*xsd:dateTime, rdl:role_end "2016—03—-10T10:00:00Z""*xsd:dateTime

Testing for conformance: Substitution

We want to use automated reasoning to check whether the requirements laid down in a design are satisfied
by the installed parts. This can be done by selecting «concrete» individuals and substituting them for the
targeted design objects. For the example given, we substitute the replaceable parts al ACME A, a2 ACME
B, and a3 ACME A for the design object El Motor a,

The effect of substitution is that we combine all the requirements of the design with all the char-
acteristics of the product specimens. If there is a conflict, the reasoner will discover an inconsistency.
In complex cases, we benefit from the reasoner’s ability to find not only obvious clashes, but also any
implicit conflicts that may be very difficult to identify without the help of automated reasoning.

Testing for consistency

To substitute product individuals for design objects, we for instance use SPARQL «construct» queries.
A query might select the individuals with «installed-as» roles assigned for a given point in time, and
replace any design objects with the installed objects. This transforms the combination of design model
and installed-object history into a snapshot representing the asset.

We can simulate substitution in an ontology tool like Protégé by manually adding identity statements
in the user interface: «the product named a/ is Same Individual As the design object a». The OWL
primitive for identity «=» is owl:sameAs; in Manchester Syntax it is expressed as follows.

Individual: ex:a
SameAs: ex:al

For the example, we find that
o Identifying a with al or a3, no inconsistency is reported

o Identifying a with a2, we obtain an inconsistency. This is due to the design requirement that a
delivers at least 850 watts of output power (rdl:DriverPower_watts). The individual a2 is of type
El Motor ACME B, which delivers only 800 watts.

Testing for completeness

The consistency check is only one of two basic tests of conformance with a design. We also need to
check whether a solution is complete in the sense of providing a product individual for each object in the
design. In other words, we need to check whether there are missing pieces.

This kind of «referential integrity» test can not be implemented using OWL reasoning. A SPARQL
«ASK» query is however readily constructed to check whether a proposed solution provides a product
for every design object.

3.3.7 TODO Rewrite as extended example: «Stream 101» examples

The following examples are taken from a document draft, «The Part 12 DL profile», by Andreas
Nakkerud in discussion with David Leal and Arild Waaler.

12

Model of stream with two measurements

The case describes a stream s_101 with two quality measurements, of pressure and temperature.
In order to support this example with reference classes, we have introduced the following resources as
example «reference library» content.

e classes Pressure, Temperature, PressureMeasurementDatum, TemperatureMeasurementDatum
e individuals bar, celsius (replacing pascal, kelvin from the source document for simplicity)

e relations hasPressure, hasTemperature for qualities, and datumTimestamp. (not needed: has_pressure_measu
and has_temperature_measurement;)

Individual: ex:S_101

Types: Ici:Stream

Facts: rdl:hasPressure ex:S_101_pressure, rdl:hasTemperature ex:S_101_temperature
Individual: ex:S_101_pressure

Types: rdl:Pressure

Facts: rdl:qualityMeasuredAs ex:pm_000001
Individual: ex:S_101_temperature

Types: rdl:-Temperature

Facts: rdl:qualityMeasuredAs ex:tm_000001
Individual: ex:pm_000001

Types: rdl:PressureMeasurementDatum

Facts: Ici:datumUOM rdl:bar, Ici:datumValue 14.0f, rdl:datumTimestamp "2016—-01-01T12:00:00Z"*"xsd:dateTime
Individual: ex:tm_000001

Types: rdl:TemperatureMeasurementDatum

Facts: Ici:datumUOM rdl:celsius, Ici:datumValue 700.0f, rdl:datumTimestamp

-"2016-01-01T12:01:00Z"*xsd:dateTime

Stream in critical conditions

We define the class of pressure measurements of at least 15 bar, and «pressure critical stream» as a stream
with a pressure in that range. (Note, the original document uses pascal as the unit of measure. That seems
unnecessary here.)

Class: rdl:PressureMeasurementDatum_min_15_bar

EquivalentTo: rdl:PressureMeasurementDatum
and (Ici:datumUOM value rdl:bar) and (Ici:datumValue some xsd:float[>= 15])

Class: rdl:PressureCriticalStream
EquivalentTo: Ici:Stream and
rdl:hasPressure some (rdl:qualityMeasuredAs some rdl:PressureMeasurementDatum_min_15_bar)

We define the class of temperature measurements of at least 850 celsius, and «temperature critical
stream» as a stream with a temperature in that range. (Note, the original document uses kelvin as the unit
of measure.)

Class: rdl:TemperatureMeasurementDatum_min_850_celsius

EquivalentTo: rdl:-TemperatureMeasurementDatum
and (Ici:datumUOM value rdl:celsius) and (Ici:datumValue some xsd:float[>= 850])

Class: rdl:TemperatureCriticalStream
EquivalentTo: Ici:Stream and
rdl:hasTemperature some (rdl:qualityMeasuredAs some rdl:TemperatureMeasurementDatum_min_850_celsius)

Either of these suffice for a «stream in critical condition» — or more precisely a stream that was, at
some some unspecified time, in a critical condition.

Class: rdl:CriticalStream
EquivalentTo: rdl:PressureCriticalStream or rdl:-TemperatureCriticalStream

13

3.4

3.41

Now (still following the original text), assume any combination of >=700 celsius and >=13 bar is also
a critical condition. This can’t be captured in a single class definition because we don’t have variable
bindings to restrict the times that measurements are taken. We can however use SPARQL.

(Note. This query has a filter that assumes timestamps are equal, which is not actually the case for the
sample data about S_101 above (they differ by one minute). To get a match running the query in Protégé,
which we use for discussion and demonstration, edit the timestamps to be equal. The query is left like
this because the Protégé SPARQL support is very limited and doesn’t support date arithmetic at all.)
PREFIX rdf: <http://www.w3.0rg/1999/02/22—-rdf-syntax—ns#>
PREFIX owl: <http://www.w3.0rg/2002/07/owl#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>

PREFIX Ici: <http://standards.iso.org/iso/15926/>
PREFIX rdl: <http://example.org/rdl/>

select « {
{ ?s a rdl:CriticalStream }
union

{

?s aIci:Stream .
?s rdl:hasTemperature/rdl:qualityMeasuredAs
[Ici:datumUOM rdl:celsius ; Ici:datumValue ?temp ; rdl:datumTimestamp ?temp_ts] ;
rdl:hasPressure/rdl:qualityMeasuredAs
[Ici:datumUOM rdl:bar ; Ici:datumValue ?pres ; rdl:datumTimestamp ?pres_ts] .
filter (?temp_ts = ?pres_ts)

i

A range of alternative approaches to representing critical conditions is available. One useful approach
involves approximating a performance curve using disjunction of conjunctions of requirements. (TODO
write this out.) This will work in OWL itself given that measurement data is aggregated appropriately so
that they apply to adequately similar times, although typically not with great performance (disjunctions
are expensive to compute). Another approach could employ SWRL «built-in» comparison operators,
which are supported by some reasoners and rule engines.

TODO SKOS concepts to represent coding schemes and meta-data

Target: Describe how SKOS can be used with ISO 15926 to represent both ontology resources and
various non-semantic terminology schemes as OWL individuals. This is primarily for use in managing
meta-data and various annotations.

SKOS ontology, and adjustments for use in OWL

SKOS was published as a W3C recommendation in 2009. It is a schema that «provides a standard way to
represent knowledge organization systems using the Resource Description Framework (RDF)» (SKOS
homepage).

With a focus on terms rather classes in the logical semantics sense, the purpose of SKOS is expressly
different from, and complementary to, that of ISO 15926. «SKOS is an area of work developing spec-
ifications and standards to support the use of knowledge organization systems (KOS) such as thesauri,
classification schemes, subject heading systems and taxonomies within the framework of the Semantic
Web» (ibid.). Because SKOS has wide usage, re-using with ISO 15926 can promote interoperability
and exchange for terminological information. We describe here how this is possible with some minor
adjustments.

The RDF version of SKOS is an OWL ontology that contains the following classes, in addition to a
set of object properties and a single data property.

e Collection

— ’Ordered Collection’

14

3.4.2

3.4.3

e Concept
e ’Concept Scheme’
o rdf:List

Unfortunately, Ordered Collection’, with the accompanying object property "has member list’, de-
pends on treating rdf:List as a class in the ontology. This is incompatible with OWL, and using rdf:List
runs the risk of unpredictable behaviour with the OWL software libraries. It’s however not essential to
make use of ordered collections, as the main features of SKOS are still available without them.

Looking at the SKOS documentation, we find that Collection and Concept Scheme fit well as special
kinds of ISO 15926 InformationObject. A suitable taxonomy of classes to include with ISO 15926 is
therefore the following; skos:Concept is left as a top level (immediately subordinate to owl:Thing).

o skos:Concept

o Ici:InformationObject
— Collection

— ’Concept Scheme’

What SKOS can bring

SKOS is useful whenever we need to manage terms, codes, and identifiers for which we have no straight-
forward categorization in terms of OWL categories. This applies to most existing code lists, as we find
in abundance in any information system. A code list will typically not distinguish between terms that
represent individuals from those that represent classes or relations — and so forth.

Any term in a non-ontological terminology can safely be treated as an OWL individual. Classifying a
term as a skos:Concept makes it available in the ontology language, so it can enter into relationships to
individuals in the ISO 15926 categories (such relationships should be then used with little commitment
to precise interpretation).

In a different but related move, it is sometimes beneficial to make use of OWL’s punning support and
refer to classes as individuals. Here there is again no suitable first-order ISO 15926 entity ready to serve
as classifier. We suggest that skos:Concept can be fruitfully applied also here. Subclasses of skos:Concept
may be introduced to group classes in a way that is accessible to automated validation.

TODO Example

We show an example of referring from a punned class, represented as a SKOS Concept, to an industry
standard that defines the class.

15

Yick
@F‘hysical@hject T @(SKOS) Concept @InformatinnObject

A\ A\

(©)AsME B16.5 Class 150 Flange (©) standard Industry Class (€) standard docume
R
LY
Y
e = =
A class defined defined by standard ’
by a standard (@) Fiange no. 12345 (@) AsME B16.5 Class 150 Flange @) AsmEB16.5.201,

unrelated to the same-titled class

Punned individual, semantically j

3.5 STARTED Roles and qualifications

Target: Describe how we can model roles that people and organisations take in activities, and the quali-
fications required to take various roles. Preferably, qualifications should be represented as requirements
in a very similar way to the requirements on equipment etc.

3.5.1 STARTED Person with exam, certificate, qualified role

The following diagram illustrates how we can relate qualified roles to certificates and the exams that are
required. We use the letter N to stand for a type of activity that requires qualification; as an arbitrary
example, a type of welding, so that having a rdl:role_N role is to possess a certain welder’s qualification.

Detailed production records are part of the documentation of process plants, and the types of individ-
uals shown in this diagram will typically all be present in such records. That is to say, there is a realistic
need for this degree of detail to be modelled.

. = lci
@Rnle @Infﬂrmatlon@hject r @Actlww

A

prof certified inw obtained inw
(©)role_n (©) centificate_N (©)exam_n

only only
Te = Te
| »]
@a_role_l\l prof certified in ,@a_certiﬂcate_l\l obtained in @a_exam_N
has rale issued to agent in
Y

@welder_a

OWL code to represent this diagram can be given as follows. Notes.

o We leave some classes out of the diagram to keep it compact: introducing rdl:Certificate, a kind of
rdl:InformationObject, rdl:RestrictedProfessionalRole specializing Role, and rdl: Test specializing

16

3.5.2

Activity.

e rdl:obtainedIn, as a relation between certificates and examinations, deserves a generic superprop-
erty with appropriate domain and range constraints, perhaps in upper ontology.

Class: rdl:RestrictedProfessionalRole
SubClassOf: Ici:Role
Class: rdl:Certificate
SubClassOf: Ici:InformationObject
Class: rdl:Test
SubClassOf: Ici:Activity
ObjectProperty: rdl:obtainedIn
Domain: rdl:Certificate
Range: rdl:Test
ObjectProperty: rdl:prof_certifiedIn
Domain: rdl:RestrictedProfessionalRole
Range: rdl:Certificate
ObjectProperty: rdl:issuedTo
SubPropertyOf: Ici:interests
Class: Ici:Role_N
SubClassOf: rdl:RestrictedProfessionalRole, rdl:prof_certifiedIn only rdl:Certificate_N
Class: rdl:Certificate_N
SubClassOf: rdl:Certificate, rdl:obtainedIn only rdl:Exam_N
Individual: ex:welder_a
Types: Ici:Person
Facts: Ici:hasRole ex:a_role_N, rdl:agentin ex:a_exam_N
Individual: ex:a_role_N
Types: Ici:Role_N
Facts: rdl:prof_certifiedIn ex:a_certificate_N
Individual: ex:a_certificate N
Types: rdl:Certificate_N
Facts: rdl:obtainedIn ex:a_exam_N
Individual: ex:a_exam_N
Types: rdl:Exam_N

We can define a class of welder according to the role granted by a qualifying exam. (This follows
the recommended pattern for BFO, where roles are considered more basic than classes that relate to
qualifications.)

Class: rdl:N_qualified_welder

EquivalentTo: Ici:Person and Ici:hasRole some Ici:Role_N

For many purposes, a simple classification will suffice to express qualification, as shown in the follow-
ing diagram. We can consider this a shortcut of the fully detailed pattern above.

Note the use of Manchester syntax to include an anonymous, complex class in the diagram. Is this
acceptable?

@N_qualiﬂed_weldern::]—[:b Person,

hasRole some Role_MN

@welder_a

The exam — obtaining a certificate

Modelling task: Characterize an examination. The examinee has successfully completed a set task (an
Activity) and is therefore granted a certificate. (We can not model the relationship between the exami-
nation activity and the fact, itself, that a qualification is true of the graduate, since we can’t talk about
facts.)

17

The focus here is on the exam activity itself, and the role of agent that the examinee has in the exam —
a form of participation.

An exam can be represented in further detail. In the following diagram, we say that any «N exam»
includes an «N» activity part, that the exam is administered by an authority, and that a certificate will be
issued by an authority.

With minor modifications, this pattern should be applicable to various kinds of certifications,
including for qualified suppliers and service providerS' i.e., an audit is analogous to an exam.

i
I

@Actwlw e

e

e T
i < has agent has parte !
P M it M 0 ti]
@ erson @exam p— ac ivity_ @ rganisation r
nnlyll
administered by »
II
& | authnrlty M
ssued to |nbta|ned in
|I yw(
||I issued by w

;rfcn
@Infﬂrmatinnot}ject fﬂi @certiﬂcate_N

OWL declarations follow. Notes.

e The person that sits an exam (is agent in the exam activity) should also be the one to whom
the certificate is issued. This requires a «diamond» relationship which can’t be captured in OWL

classes.

o The authority that administers the exam doesn’t need to be identical to the authority that issues the

certificate.

o The class rdl:Certificate_N is given additional constraints here

ObjectProperty: rdl:administeredBy
SubPropertyOf: Ici:interests
ObjectProperty: rdl:iissuedBy
SubPropertyOf: Ici:interests
Class: rdl:Authority_N
SubClassOf: Ici:Organisation
Class: rdl:Activity_N
SubClassOf: Ici:Activity
Class: rdl:Exam_N
SubClassOf: Ici:Activity, Ici:hasPart some rdl:Activity_N,
rdl:administeredBy some rdl:Authority_N, rdl:hasAgent some Ici:Person
Class: rdl:Certificate_N
SubClassOf: rdl:issuedBy some rdl:Authority_N,
rdl:issuedTo some Ici:Person

3.5.3 TODO Valid duration

Note. There’s a W3C working group for temporal issues in OWL, including the various interactions of
temporal intervals, at https://www.w3.0org/TR/owl-time/. We should try to avoid requirements on the
representation of time in Part 12 that can be in conflict with the future recommendations issued by this

working group.

18

https://www.w3.org/TR/owl-time/

The following can be added as datatype properties with xsd:dateTime range.
o certificate issued date
e exam completed date
e role valid from—to date

The following figure illustrates the use of data properties to assign start and end times to a role, as for
instance to say when the role is valid.

@ role_M

T

I

has role
@welder_a @a_rnle_N

rale start rale end

sz 5-12-01T14:27:26ZMxsd:dateTime sz 7-01-01T1 4:27:262xsd:dateTime

OWL declarations:

Individual: ex:a_role_N
Facts: rdl:role_start "2015-12—-01T14:27:26Z2"*xsd:dateTime,
rdl:role_end "2017—-01-01T14:27:26Z""xsd:dateTime

There is a straightforward way to use OWL data ranges for time period restrictions: we can check date
values of instances against date ranges for classes. The following OWL code declares, using equivalence
statements,

e RoleValid2016 as the class of roles that have start and end validity dates that cover the whole of
2016 (as given by role_start, role_end) ,

o N_qualified_welder_2016 as any N_qualified_welder qualified throughout 2016 (using Role-
Valid2016).

Note that this kind of use of EquivalentTo will often yield slow reasoning performance.

Class: Ici:RoleValid2016
EquivalentTo: Ici:Role and
(rdl:role_start some xsd:dateTime[<= 2016—-01-01T00:00:00Z]) and
(rdl:role_end some xsd:dateTime[>= 2017-01-01T00:00:00Z])
Class: rdl:N_qualified_welder_2016
EquivalentTo: rdl:N_qualified_welder and
Ici:hasRole some (Ici:Role_N and Ici:RoleValid2016)

With an equivalence definition as given here, the reasoner (tested with HermiT and Pellet) will classify
our example individual ex:welder_a as an rdl:N_qualified_welder_2016.

Individual: ex:welder_a
Types: rdl:N_qualified_welder_2016 # inferred by reasoner

We see in this example that it’s reasonably simple to introduce classes with time period restrictions,
and then let the reasoner figure out whether qualifications on individuals are valid during these periods.

19

An OWL limitation
Here is a typical case:
e Activity n happens on March 20

e Professional a has a certificate for doing n type tasks, given in start and end dates for the relevant
role (or similar: with a different modelling, the dates may be said to apply to the certificate; etc.)

o We would like to have the reasoner figure our whether a is qualified to do » on March 20

Unfortunately, the reasoning in such a case involves comparing dates — the particular dates of quali-
fications with the particular date of the activity. This can not be done in OWL itself. Some approaches
could be

o using SWRL extension rules, such as the SWRL built-ins swrlb:lessThan (for ’<’) and swrlb:greaterThan
(see http://www.daml.org/swrl/proposal/builtins.html),

e using SPARQL ASK queries,

e by introducing, ad-hoc, a class to represent the «date range during which professional a is quali-
fied».

Here is a sketch of a SWRL rule to test qualified dates. Let x < y stand for swrilb:lessThan(?x, ?y).

Rule: activity(x), at—date(x, t),
agent(y), qualification—start(y, t1), qualification—end(y, t2),
t1 <t,t <t2 —> can—do(y, x)

Each of these has disadvantages.

o SWRL extensions, including the «built-ins», are non-logical. They are supported by the Pellet
reasoner and can be readily used with rule engines, but they are not supported by, e.g., HermiT.

e SPARQL queries can not be straightforwardly included in an ontology. See, however, SPIN for a
way to integrate queries (http://spinrdf.org/), supported by TopQuadrant products as well as
the RDF4J (formerly Sesame) framework (http://rdf4j.org/).

e Adding ad-hoc classes pollutes the ontology with countless classes that may impact performance.

3.5.4 TODO Being qualified for a type of activities

Modelling task: Characterize qualification for a category of tasks, like *a is qualified to drive’.

Note. Any talk of qualification will invoke modal notions of permission and obligation which can not
be fully captured in OWL.

We can get partly around the «no modalities» constraint by introducing object properties with «hid-
den» modal meaning.

o driving has_agent only qualified_driver <- here has_agent should have been the modal «ought-to-
have_agent» — in a variant of, we interpret statements in the ontology as normative, describing a
world where the requirements are fulfilled

— (where every qualified_driver has_certificate some drivers_licence)

20

http://www.daml.org/swrl/proposal/builtins.html
http://spinrdf.org/
http://rdf4j.org/

	What is this?
	Definitions
	Declarations
	Prefixes
	Ontology

	Classes
	lci:Activity
	lci:Function
	lci:PhysicalObject
	lci:ScalarQuantityDatum
	lci:PhysicalQuantity
	lci:Role
	lci:Scale

	Object relations (object properties)
	lci:hasQuality
	lci:qualityQuantifiedAs
	rdl:hasMassMeasurement
	rdl:hasParticipant
	lci:participantIn
	lci:hasFunction
	lci:hasRole
	lci:realizedIn
	lci:roleOf
	rdl:functionalIn

	Data relations (data properties)
	lci:qualityQuantityValue
	rdl:datumTimestamp

	Annotation relations (annotation properties)
	lci:tplUOM
	lci:tplQuality
	lci:tplQuantification
	foaf:depiction

	Examples
	Physical qualities, quantified
	A big hammer and a small hammer
	SWRL rule to infer shortcut relations

	STARTED Functions
	Background: introducing functions to the ontology
	Modelling pattern
	A registry of functions in reference data

	STARTED Requirements versus solutions
	Targets
	Schematic representation
	Industry classes for the example: Electric motors
	Individuals for the example: design and replaceable parts
	Design and installed parts
	Testing for conformance: Substitution
	TODO Rewrite as extended example: «Stream 101» examples

	TODO SKOS concepts to represent coding schemes and meta-data
	SKOS ontology, and adjustments for use in OWL
	What SKOS can bring
	TODO Example

	STARTED Roles and qualifications
	STARTED Person with exam, certificate, qualified role
	The exam – obtaining a certificate
	TODO Valid duration
	TODO Being qualified for a type of activities

