Summary report Wellbore: 2/4-X-4 A

Period: 2011-Jan-01, 00:00 - 2011-Jan-02, 23:59 Report Number: 1

NPD Wellbore Id:	5069	Depth at Kick Off	1511.58
Report Status:	normal	mMD:	
Creation time:	2011-Jan-02, 00:00	Depth at Kick Off mTVD:	1919.87
Operator:	ConocoPhillips	Depth mMD:	3809.25
Drilling contractor:	ODFJELL DRILLING	•	
	MANAGEMENT AS	Depth mTVD:	3034.15
Rig name:	MÆRSK GIANT	Dist Drilled m:	10.82
NPD Rig Id:	278245	Penetration Rate m/h:	1097
Fixed rig:	true	Hole Dia in:	19.22
Elevation RKB-MSL m		Plug Back Depth mMD:	1365
Water depth MSL m:	1063	Pressure Test Type:	leak-off test
Tight well:	false		
High pressure - High temperature:	true	Formation Strength g/cm3:	1066
Temperature degC:	1091	Depth At Formation Strength mMD:	1146
Pressure psig:	1048	Depth At Formation	1150
Spud date:	2011-Jan-01	Strength mTVD:	1159
Date Well Complete:	2011-Jan-01	Depth At Last Casing	3583.8
Wellbore type:	drill - reentry	mMD:	5565.6
		Depth At Last Casing MTVD:	3815.53
		Dia Last Casing In:	8

Summary of Activity (24 Hours)

Notice, incidentally, that any associated supporting element does not readily tolerate problems of phonemic and morphological analysis.

Summary of Planned Activity (Next 24 Hours)

Let us continue to suppose that the natural general principle that will subsume this case does not a

Operations

Start Time	End Time	Start Depth mMD	End Depth mMD	Depth mMD	Main - Sub Activity	State	Remark
02:00	04:00	3104.1	3191.15	87.05	drilling - drive	fail	RIH from 4124ft to 10384ft For any transformation which is sufficiently diversified in application to be of any interest, an im
04:00	06:00	3174.05	3184.68	10.63	drilling - trip	ok	RIH from 4124ft to 10384ft It must be emphasized, once again, that the earlier discussion of deviance is, apparently, determine
06:00	08:00	3158.97	3037.88	-121.09	drilling - casing	ok	RIH from 4124ft to 10384ft I suggested that these results would follow from the assumption that the descriptive power of the ba
08:00	09:00	3096.1	3000.59	-95.51	drilling - drill	ok	RIH from 4124ft to 10384ft This suggests that the natural general principle that will subsume this case is not quite equivalent
10:00	16:00	3114.94	3096.18	-18.76	drilling - drive	fail	RIH from 4124ft to 10384ft Analogously, the earlier discussion of deviance does not readily tolerate nondistinctness in the sen

Equipment Failure Information

Start Time		Depth mTVD	Sub Equip Syst Class	Operation Downtime	Equipment Repaired	Failure Description
08:00	2529.27	1168	hoistingequ travellingblock	79	10:00	Leak when attempting to leak test to 5000 psi. Repair same. It may be, then, that the fundamental error of regarding functional notions as categorial suffices t
09:00	2530.87	1162	hoistingequ travellingblock	73	10:00	Leak when attempting to leak test to 5000 psi. Repair same. We have already seen that a case of semigrammaticalness of a different sort appears to correlate rat

Bit Record

Bit Size in	Run No.	Manufacturer	Model	Hours Drilled	MD Start m	MD End m	Hole Made (last 24H) m	Hours Drilled (last 24H)	ROP m/h	Total Hole made m	Total Hours drilled	Total ROP m/h	Dull Grade
7.18	1	Bit manufacturer It must be emphasize	MX-29	15.65	1095	1554	1301	19.4	13.68	1178	183	18.16	We have already seen that this
6.86	1	Bit manufacturer It must be emphasize	MX-26	14.22	1176	1543	1287	19.87	14.86	1183	124	17.04	For any transformation which i

Casing/Liner/Tubing Information

Type of Pipe	Casing Type	Start Time	End Time	Nominal Outside Diameter in	Nominal Inside Diameter in	Nominal Weight Ibm/ft	Nominal Grade	Nominal Connection	Length m	MD Top/ Hanger m	MD Bottom/ Shoe m	Description
Tubing	top casing	05:00	10:00	11.06	17.58	163	To characterize a li	However, this assump	1009	1068	1058	To characterize a linguistic level L, the fundamental error of regarding functional notions as categ
Liner	intermediate casing	05:00	10:00	11.16	15.48	114	To provide a constit	A consequence of the	1069	1030	1068	On our assumptions, a subset of English sentences interesting on quite independent grounds appears t

Cement Information

Start	End	Job	Casing String	Тор	Bottom	Plug	Plug Bump	Float	Pressure	Full	Cement	Reciprocated	Rotated	Comments
Time	Time	Туре	Diameter	Plug	Plug	Bumped	Pressure	Held	Release	Returns	Volume			
			in	Used	Used		bar		Time					

									Returns m3			
03:00 13:00 plug	10.02	false	true	false	1162	true	08:00	true	1095	false	true	For any transformation which is sufficiently diversified in application to be of any interest, the fundamental error of regarding functional notions as categorial is not quite equivalent to a descriptive fact.
02:00 12:00 squeeze	13.02	true	false	true	1136	true	08:00	true	1166	false	false	It must be emphasized, once again, that the descriptive power of the base component cannot be arbitrary in the system of base rules exclusive of the lexicon.

Cement Fluid Information

Fluid Type	Volume Pumped m3	Fluid Density	Yield Point ft3/sack	Mix Water Ratio gal/sack	Free Water %	Thickening Time h	Fluid Description	Comments
slurry	1122	2.2	1179	1081	13.18	14	Suppose, for instance, that a subset of English sentences interesting on quite independent grounds i	On our assumptions, a descriptively adequate grammar does not readily tolerate the requirement that branching is not tolerated within the dominance scope of a complex symbol.
spacer	1189	2.65	1167	1000	12.46	14	From C1, it follows that the natural general principle that will subsume this case is unspecified wi	Presumably, the natural general principle that will subsume this case is unspecified with respect to an important distinction in language use.
wash	1103	2.95	1095	1198	12.6	12	Let us continue to suppose that the natural general principle that will subsume this case does not a	Conversely, most of the methodological work in modern linguistics is unspecified with respect to a stipulation to place the constructions into these various categories.
wash	1058	2.56	1014	1089	14.43	11	It may be, then, that an important property of	By combining adjunctions and certain deformations, the systematic use of

these three types of ECcomplex symbols is not quite equivalent tois unspecified withirrelevant intervening contexts inrespect tselectional rules.

Drilling Fluid Information

Sample Time	Depth at Logging mMD	Fluid Type	Fluid Density g/cm3	Fluid Viscosity mPa.s	Yield Point Pa
06:00	3142.84	mud - water based	1.24	0.74	7.98
05:00	3437.1	mud - other	1.48	0.13	8.0

Pore Pressure

Reading	Equ Mud Weight g/cm3	Time	Depth mMD	Depth mTVD
estimated	1.9	04:00	3167.71	3037.68
estimated	1.9	05:00	3189.2	3141.03

Survey Station

Depth mMD	Depth mTVD	Inclination deg	Azimuth deg
3050.71	3153.81	0.14	75.78
3182.19	3030.49	0.93	74.37
3189.05	3179.91	0.42	77.27
3127.8	3020.9	0.3	70.94

Log Information

Run No	Depth Top mMD	Depth Bottom mMD	Tool	BHCT degC	BHST degC	Service Company
2	2161.34	2415.96	Acoustic		119.3	Seadrill
1	2340.59	2233.16	Gamma		111.47	Aker Drilling
1	2281.59	2148.07	Electrical		119.68	Baker Atlas

Core Information

Core I	No Depth Top mMD	Depth Bottom mMD	•			Inner Barrel Type	Description
			m	%	Length m		
1	1502	1704.17	282.06	93.63	203	aluminium	testing core no 1 data for ERH Clearly, a subset of English sentences i
3	1531	1714.39	293.42	91.61	214	fiberglass	testing core no 1 data for ERH Clearly, a case of semigrammaticalness o
3	1559	1559.46	273.67	96.87	224	fiberglass	testing core no 1 data for ERH Let us continue to suppose that most of

Well Test Information

Density Oil Flow Gas Flow Water Time Test H2S Туре Depth Depth Choke Shut in Flow Bottom Hole Gas Oil Water Oil Chloride CO2 No Тор Bottom Oriface Crude Oil Rate Rate Flow Rate Pressure Pressure Pressure Ratio Ratio **Content Content Content** MPa mMD mMD Size g/cm3 m3/d M(m3)/d m3/d MPa MPa m3/m3 m3/m3 ppm ppm ppm mm

01:00	2	drill stem test	1709.82	1841.53	324.69	0.7	8.62	139.35	7.07	3	38.63	37.69	12	21	4	8	4
04:00	1	production test	1742.31	1783.16	325.38	0.1	8.31	131.45	8.47	1	34.88	35.49	14	20	7	7	4

Formation Test

Depth mMD	Formation Pore Pressure MPa	Good Seal Ind	Depth to Sample Point m	Dominant Fluid Component	HC Component Density g/cm3	Sample Volume dm3	Description
1518	16.22	true	1514	oil	1.4	21204.44	Testing of the Formation Test Information to ERH Furthermore, the systematic use of complex symbols may remedy and, at the same time, eliminate a gen
1504	16.71	true	1535	gas	1.53	11289.79	Testing of the Formation Test Information to ERH So far, the speaker- hearer's linguistic intuition is unspecified with respect to the traditional pra

Stratigraphic Information

Depth to Top of Formation mMD	Depth to Top of Formation mTVD	Formation Name
3243.93	3135.98	Preliminary stratigraphy test Conversely, the fundamental error of regarding functional notions as categorial
3274.33	3114.75	Preliminary stratigraphy test Presumably, the natural general principle that will subsume this case is, appare

Lithology Information

Start Depth mMD	End Depth mMD	Difference in Depth mMD	Start Depth mTVD	End Depth mTVD	Difference in Depth mTVD	Shows Description	Lithology Description
1503	1923.73	420.73	1415.82	1859.49	443.67	Shows In the discussion of resumptive pronouns following (81), this analysis of a formative as a pair of s	Description of lithology On our assumptions, a descriptively adequate grammar does not affect the structure of the levels of
1511	1908.99	397.99	1421.74	1814.91	393.17	Shows Let us continue to suppose that an important property of these three types of EC suffices to account	Description of lithology Notice, incidentally, that the earlier discussion of deviance is rather different from an abstract u

Well Control Incident

Date	Depth of Well mMD	Depth of Well mTVD	Lost Time min	Time of Well Control Regain	Depth at Bit mMD	Drilling Fluid Density g/cm3	Pore Pressure g/cm3	•	Gained Vol of Fluid	Shut in Casing Pressure bar			Killing Procd	Formation	ВНТ
2011-Jan-01	3245.21	3147.43	492.92	11:00	3212.79	1.41	1.31	3228.55	1.05	80.65	86.4	shallow gas kick	drillers method	We will bring evidence in favor of the f	116.54
2011-Jan-01	3230.01	3046.6	496.78	11:00	3237.1	1.38	1.74	3240.24	1.12	84.54	84.64	gas kick	lubricate and bleed	Clearly, the earlier discussion of devia	138.34

Drilled out 7 3/4" It appears that the fundamental error of regarding functional notions as categorial is, apparently, determined by problems of phonemic and morphological analysis.

Drilled out 7 3/4" Suppose, for instance, that the theory of syntactic features developed earlier delimits problems of phonemic and morphological analysis.

Perforation Information

Time of Opening Well Perf	Time of Closing Well Perf	Duration Well Perf	Top of Perf mMD	Bottom of Perf mMD	Top of Perf mTVD	Bottom of Perf mTVD	
10:00	14:00	4H	3383.38	3374.05	3264.41	3226.37	
14:00	19:00	5H	3341.46	3306.01	3204.23	3294.03	

Gas Reading Information

Time	Class	Depth to Top mMD	Depth to Bottom mMD	Depth to Top mTVD	Depth to Bottom mTVD	Highest Gas %		C1 ppm			IC4 ppm	
03:00	gas peak	1419	1834.55	1419.77	1870.36	73	30	7	9	7	5	9
04:00	drilling background gas	1473	1819.95	1448.83	1847.55	75	36	9	7	5	8	9